Recombinant protein expression in lower eukaryotes Yeasts

Lecture 3

MINIREVIEW

Introduction and expression of genes for metabolic engineering applications in *Saccharomyces cerevisiae*

Nancy A. Da Silva & Sneha Srikrishnan

Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, USA

Appl Microbiol Biotechnol (2007) 77:513–523 DOI 10.1007/s00253-007-1209-0

MINI-REVIEW

Yeast expression platforms

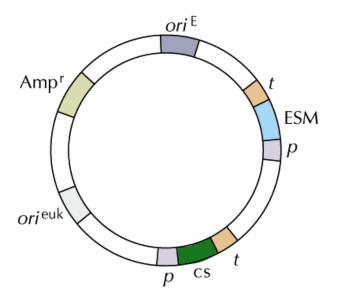
Erik Böer · Gerhard Steinborn · Gotthard Kunze · Gerd Gellissen

Advantages of eukaryotic hosts

- Conservation of many cellular processes between different eukaryotic species
 - Correct S-S bond formation
 - Post-translational modifications
 - O- / N-glycosylation
 - Proteolytic processing of a precursor into active form
 - Selected segments of amino acid sequences are removed to yield a functional protein
 - Secretory pathway (proteins targeted to various organelles or exported for harvesting)

Advantages of yeast as expression system

- It is easy and cheap to grow on simple media in small vessels and large scale bioreactors
- secretes few of its own proteins -> product can easily be purified
- Tremendous range of vectors and genetic resources available, including promoters and regulatory systems
- Vectors can be maintained as plasmids or integrated
- We know a lot about *Saccharomyces cerevisae* and also *Pichia pastoris*
- For therapeutics no risks of contaminations with human pathogens


Disadvantages of yeast as expression system

- Slower growth, doubling time of bacteria is 20-30 min while of yeast 1.5-2 hours at 30°C.
- Hyperglycosylation of secreted glycoproteins can be observed
- Post-translational modifications such as glycosylation may be different when compared to human proteins
- Higher number of recombination events (advantage for strain engineering, disadvantage for strain stability)

A general eukaryotic expression vector

- A selectable eukaryotic marker gene (ESM)
- A eukaryotic promoter sequence
- The appropriate eukaryotic transcriptional and translational stop signal
- A sequence that signals polyadenylation of the transcript messenger RNA (mRNA)
- eukaryotic origin of replication (ori^{euk})
- Marker gene (Amp^R) and origin (ori^E) for propagation of vector in *E. coli*

Molecular Biotechnology: Principles and Applications of Recombinant DNA, Fourth Edition Bernard R. Glick, Jack J. Pasternak, and Cheryl L. Patten

Coding sequence of gene of interest

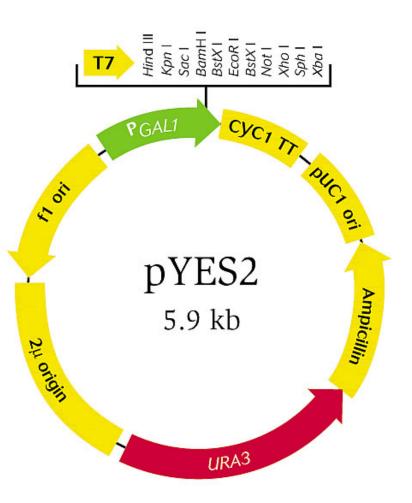
Saccharomyces cerevisiae as expression system

Vector and expression strategies

Some general facts about Saccharomyces cerevisiae

- Fast growing and robust lower eukaryote of about 5 µm diameter
- Haploid or diploid organism that can reproduce asexually and sexually
- Extensively used as model system which generated a vast knowledge
- First eukaryote being sequenced (1996)
 - Verified ORFs: 4932, uncharacterized ORFs:866, dubious
 ORFs: 809
- Many tools available for genetic engineering
- generally recognized as safe (GRAS-status)
- Used for production of many recombinant proteins, biochemicals, biofuels and secondary metabolites

Disadvantages of S. cerevisiae

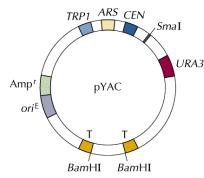

- Evolved to ferment sugars into EtOH
 - Even under aerobic conditions, in presence of excess sugar produces EtOH up to levels inhibiting growth

S. cerevisiae expression vectors

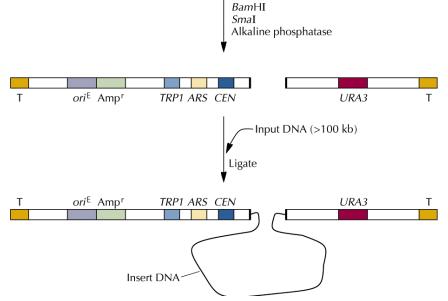
- Episomal plasmid vectors or *E. coli/*yeast shuttle plasmids
 - High copy number (25-200 copies per cell) based on 2µ origin of replication
 - Low copy number (1-3) based on CEN/ARS origin of replication
- Integrative vectors
- Yeast artificial chromosomes (YACs)

2µ based plasmid

- 2µ origin of replication, copy number 25-200
- Yeast promoter and terminator
- Yeast selectable markers
 - G418, zeocin resistance
 - Auxotrophic marker genes:
 URA3, HIS3, TRP1, LEU2, ADE2
- *E. coli* origin of replication and selection marker
- 2µ plasmids can be unstable at large scale (>10 liters)


CEN/ARS based plasmid

- low copy number vectors (1 to 3 copies) based on ARS and CEN sequences
 - vectors replicate as though they were small chromosomes
 - Copy number is stably maintained
- Centromere (CEN) is required for segregation of chromosomes during mitosis
- ARS (autonomous replicating sequence) is the origin of replication in the yeast genome
- Other elements as in 2µ plasmids


Yeast artificial chromosome (YAC)

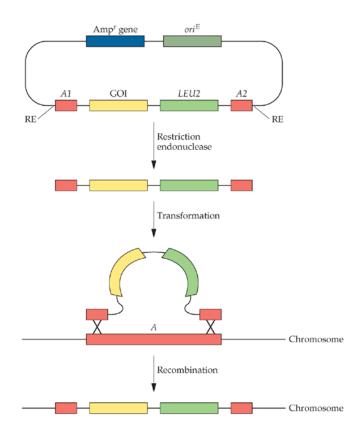
- The YAC is maintained as a separate linear chromosome in the host yeast cell and is highly stable
- In addition to CEN/ARS sequences YAC contain terminal telomer sequences
- The YAC is designed to clone large fragments of DNA (100-1000kb)

Construction of yeast artifical chromosomes (YAC)

Telomere sequence required to insure stability of YAC ends

DNA fragment can range from 100 to 1000kb

Molecular Biotechnology: Principles and Applications of Recombinant DNA, Fourth Edition Bernard R. Glick, Jack J. Pasternak, and Cheryl L. Patten

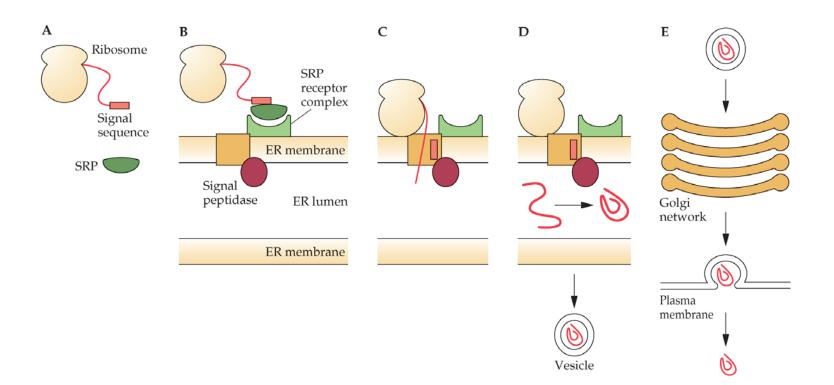

Copyright © 2010 ASM Press American Society for Microbiology 1752 N St. NW, Washington, DC 20036-2904

Integration into the chromosome by homologous recombination

- Ability of complementary sequences to align and exchange fragments in a double crossover event
- High efficiency with linear fragments, low efficiency with circular plasmids
- Targeted integration of gene of interest or deletion of interfering gene
- Site-specificity and high recombination frequency of S. cerevisiae is major advantage over other yeast systems

Expression in S. cerevisiae Use of integrative systems

- Yeast integrative plasmid lacks eukaryotic origin of replication!
- Homologous region of 40-50 bp on each side typically sufficient for integration

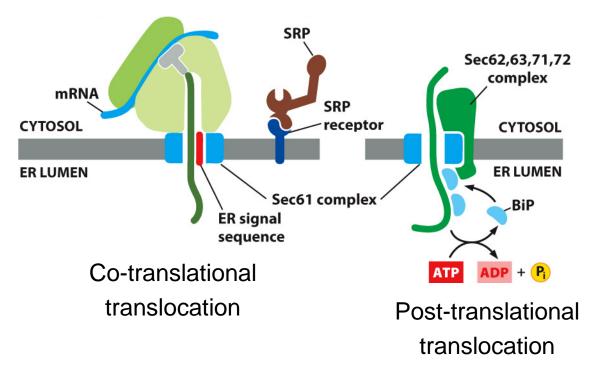

Molecular Biotechnology: Principles and Applications of Recombinant DNA, Fourth Edition Bernard R. Glick, Jack J. Pasternak, and Cheryl L. Patten

Copyright © 2010 ASM Press American Society for Microbiology 1752 N St. NW, Washington, DC 20036-2904

Recombinant proteins produced in S. cerevisiae

VACCINES Hepatitis B virus surface antigen Malaria circumsporozoite protein HIV-1 envelope protein DIAGNOSTICS Hepatitis C virus protein HIV-1 antigens HUMAN THERAPEUTIC AGENTS Epidermal growth factor Insulin Insulin-like growth factor Platelet-derived growth factor Proinsulin Fibroblast growth factor Granulocyte-macrophage colonystimulating factor α_1 antitrypsin Blood coagulation factor XIIIa

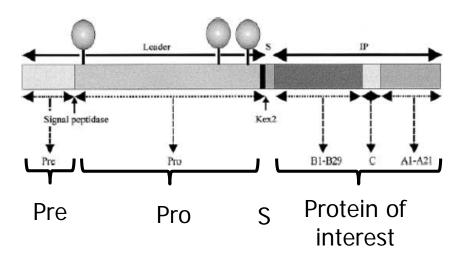
Reminder: Secretion of proteins

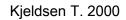


ASM PRESS

Reminder: Secretion of proteins

- Protein secretion is basically the same in all eukaryotic organisms
- Signal sequence of protein is recognized by signal recognition particle (SRP)
- SRP directs secretory protein to the translocation machinery on the ER-membrane
- After translocation proteins undergo:
 - Folding
 - Post-translational modifications
 - Is transported through secretory pathway
 - Released into the medium


Reminder: Co- and postranslational translocation



- In mammals, mostly cotranslational translocation is used
- In yeast, co-translational and post-translation translocation routes are used
 - Route chosen depends on the strength of the interaction between signal sequence and SRP (stable interaction or not)

Mat-alpha leader sequence driving protein expression in yeast

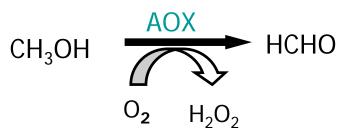
- Mating factor alpha (Matα) leader sequence is most used signal to drive protein secretion in yeasts (Baker's yeast and *P. pastoris*)
- Matα leader consist of a pre- and prosequence
- Presequence functions as signal sequence (=ER import signal)
 - it drives post-translational translocation
- The pro-peptide, a hydrophobic protein (binding to chaperones) is thought to slow down and ensure proper folding of the entire protein
- Proteolytic processing occurs during translocation (pre-sequence) and when leaving the Golgi (prosequence)

Promoter used for expression in S. cerevisiae

Table 7.1 Promoters for S. cerevisiae expre	ssion vectors
---	---------------

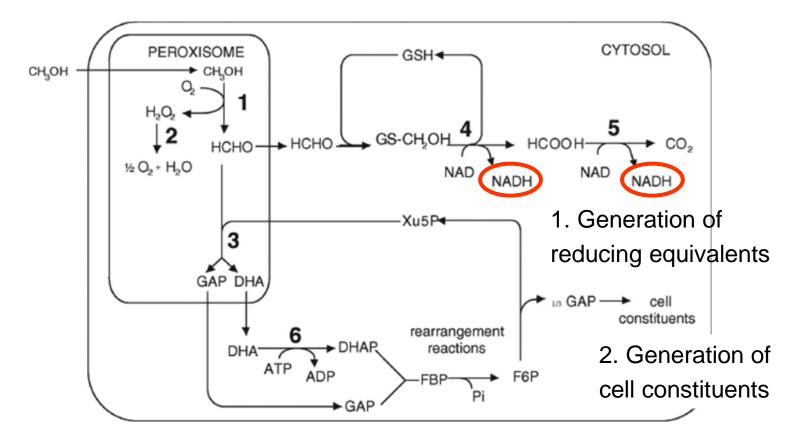
Promoter	Expression conditions	Status
Acid phosphatase (PH05)	Phosphate-deficient medium	Inducible
Alcohol dehydrogenase I (ADHI)	2–5% Glucose	Constitutive
Alcohol dehydrogenase II (ADHII)	0.1–0.2% Glucose	Inducible
Cytochrome c_1 (CYC1)	Glucose	Repressible
Gal-1-P Glc-1-P uridyltransferase	Galactose	Inducible
Galactokinase (GAL1)	Galactose	Inducible
Glyceraldehyde-3-phosphate dehydrogenase (<i>GAPD, GAPDH</i>)	2–5% Glucose	Constitutive
Metallothionein (CUP1)	0.03–0.1 mM copper	Inducible
Phosphoglycerate kinase (PGK)	2–5% Glucose	Constitutive
Triose phosphate isomerase (TPI)	2–5% Glucose	Constitutive
UDP galactose epimerase (GAL10)	Galactose	Inducible

Pichia pastoris as expression system


Vector and expression strategies

Comparison of expression system S. cerevisiae – P. pastoris

- Problems with production in S. cerevisiae:
 - For some proteins production level low
 - Hyperglycosylation (more than 100 mannose residues in Nglycosylation)
 - Sometimes secretion not good -> protein retained in cell wall
 - Produces high amounts of EtOH -> toxic for the cells
- Advantages of production in *Pichia pastoris*:
 - Highly efficient promoter, tightly regulated (alcohol oxidase -> AOX, induced by MeOH)
 - Produces no EtOH -> very high cell density can be achieved
 - Secretes very few of its own proteins
 - 10-100 fold higher heterologous protein expression levels


Methanol utilization by *P. pastoris*

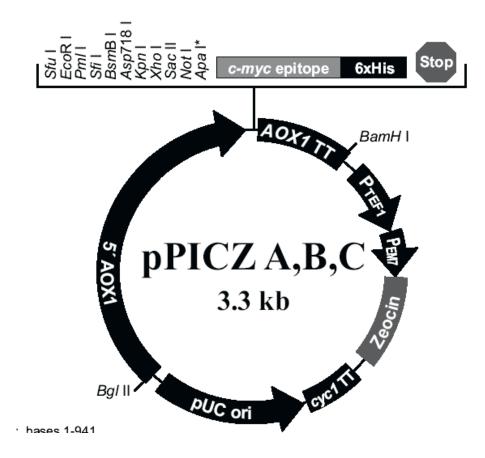
- *Pichia* is a methylotrophic yeast (can metabolize MeOH)
- 2 genes encoding alcohol oxidase (AOX1 and AOX2)
 - AOX1 responsible for majority of AOX activity

- Reaction proceeds in specialized compartment (peroxisome)
 - During methanol oxidation, H_2O_2 is produced
 - H₂O₂ is detoxified by catalase

Methanol metabolism in P. pastoris

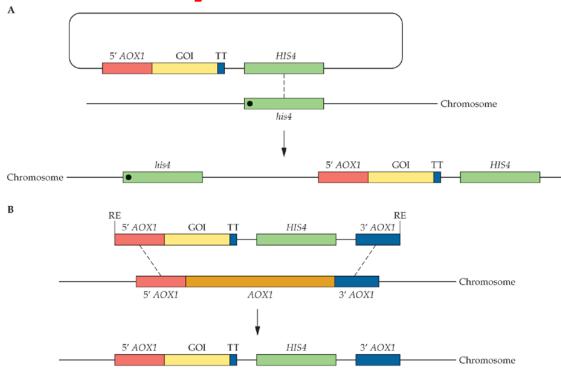
1 – **alcohol oxidase**, 2 – **catalase**, 3 – dihydroxyacetone synthase, 4 – formaldehyde dehydrogenase, 5 – formate dehydrogenase, 6 – dihydroxyacetone kinase, GSH – glutathione, Xu5P – xylulose-5-phosphate, FBP – fructose-1,6-bisphosphate.

AOX1 promoter as tool for protein expression


- AOX1 gene inducible by methanol
 - Protein can reach up to 30% total soluble protein in cells grown with methanol
- Expression controlled at transcription level
- Glucose represses transcription, even in presence of methanol -> often Glycerol used as carbon source
- AOX1 promoter powerful tool to drive protein expression

P. pastoris expression host strains

Strain name	Genotype	phenotype
Y-11430		Wild-type
GS115	his4	Mut+ His-
KM71	aox1::ARG4 his4 arg4	MutS His-
MC100-3	aox1::ARG4 aox2::HIS4 his4 arg4	Mut- His+
SMD1168	pep4 his4	Mut+ His- protease deficient


- Mut⁺: both AOX1 and AOX2 are functional -> methanol as inducer and as carbon source used
- Mut^s: only AOX2 functional -> methanol as inducer and just to minor extent as carbon source
- Mut: none of the AOX are functional -> methanol only as inducer

P. pastoris expression vector

With few exceptions, only integrative vectors available for expression in Pichia

Integrative plasmid systems for *P. pastoris*

- Lower frequency of homologous recombination than in *S. cerevisiae*, due to higher NHEJ activity
- Strain engineering more tedious/random

Molecular Biotechnology: Principles and Applications of Recombinant DNA, Fourth Edition Bernard R. Glick, Jack J. Pasternak, and Cheryl L. Patten

PRESS

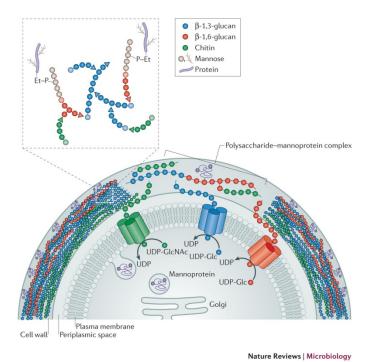
Copyright © 2010 ASM Press American Society for Microbiology 1752 N St. NW, Washington, DC 20036-2904

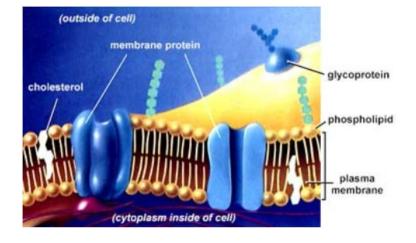
Other fungal expression systems

- Hansenula polymorpha
- Kluyveromyces lactis
- Schizosaccharomyces pombe
- Schwanniomyces occidentalis
- Yarrowia lipolytica
- Trichoderma reesei

Appl Microbiol Biotechnol (2007) 77:513–523 DOI 10.1007/s00253-007-1209-0

MINI-REVIEW


Yeast expression platforms


Erik Böer · Gerhard Steinborn · Gotthard Kunze · Gerd Gellissen

Advantages of yeasts versus other eukaryotic expression systems

- Less expensive, easier to grow, higher throughput
- Shorter cell cycle time than tissue culture (Human embryonic kidney cells 1 day doubling)
- Higher protein yield
- Protein pharmaceuticals free of human disease
- Fewer regulations compared to tissue culture
- More extensive genetics (CrispR might change this)
- Transformation/DNA manipulations easier

Disadvantage of yeasts versus other eukaryotic expression systems

S. cerevisiae

Mammalian cell

- Secretory proteins need to cross the cell wall in yeast!
- Limits secretion of bigger molecules

Summary

- As a unicellular eukaryote, yeast is quick, easy and inexpensive to genetically manipulate and culture
- A wealth of knowledge and tools available for S. *cerevisiae*, and more recently also other fungal expression systems
- High protein yield and ease of industrial scale-up, make yeast/fungal strains useful for protein production