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Abstract

Metabolic pathway engineering in the yeast Saccharomyces cerevisiae leads to

improved production of a wide range of compounds, ranging from ethanol

(from biomass) to natural products such as sesquiterpenes. The introduction

of multienzyme pathways requires precise control over the level and timing of

expression of the associated genes. Gene number and promoter strength/regula-

tion are two critical control points, and multiple studies have focused on mod-

ulating these in yeast. This MiniReview focuses on methods for introducing

genes and controlling their copy number and on the many promoters (both

constitutive and inducible) that have been successfully employed. The advanta-

ges and disadvantages of the methods will be presented, and applications to

pathway engineering will be highlighted.

Introduction

The yeast Saccharomyces cerevisiae is a key laboratory and

industrial microorganism and an excellent host for meta-

bolic pathway engineering. As a eukaryote, S. cerevisiae

can synthesize a variety of fungal and mammalian pro-

teins that can prove problematic in bacteria. Ease of culti-

vation, success at the industrial level over many years,

and generally recognized as safe (GRAS) status by the U.

S. Food and Drug Administration contribute to the inter-

est in this microorganism. The broad array of tools avail-

able for molecular-level manipulation of this species and

knowledge of the S. cerevisiae metabolic, secretory, trans-

port, signaling, and other pathways enable the successful

engineering of this yeast for a diverse range of applica-

tions.

Pathway engineering requires the regulated expression

of multiple foreign or native genes. In contrast to the

operons that can be employed in prokaryotic cells, a ser-

ies of independently transcribed genes must be intro-

duced in yeast. Both the level and the timing of enzyme

synthesis can be essential for the successful introduction

of new pathways. In addition to gene number and tran-

scription level/timing, translational and post-translational

control can be important for modulating protein levels.

This MiniReview focuses on methods developed to

introduce and control the expression of genes in S. cerevi-

siae, focusing on those most useful for metabolic engi-

neering applications. The review will consider the control

of gene number, an important method for regulating

overall expression. This will include the advantages and

limitations of plasmid vectors, and useful new vector ser-

ies. Chromosomal gene integration is efficient in yeast

and offers precise control over gene copy number and

stability. We will consider the important issues and meth-

ods for chromosomal gene integration. Controlling tran-

scription level via constitutive and inducible promoters

offers another critical method of gene expression regula-

tion. Useful promoters (including new series of promot-

ers), the range of promoter strengths available, and

regulation will be summarized. Recent metabolic engi-

neering studies in S. cerevisiae will be used to demon-

strate the application of these methods.

While the review will focus on the critical elements of

introducing, maintaining, and expressing genes, we recog-

nize the importance of additional methods to control the
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enzyme levels in yeast, including those modulating trans-

lation and post-translational processing.

Introduction of genes and regulation of
gene number

Both plasmid vectors and chromosomal integration are

widely used to introduce genes and control copy number

in S. cerevisiae. Each has an important role, and the

choice depends on the overall goal (e.g. overexpression,

precise control of gene number). While the plasmids

available for use in yeast are much more limited than

those for Escherichia coli, they have been successfully

employed for many metabolic engineering applications.

They are extremely useful for gene expression; however,

plasmids offer limited control of copy number, and segre-

gational stability can be a significant issue even in selec-

tive medium. As homologous recombination is very

efficient in S. cerevisiae, integration of genes into the gen-

ome offers an alternate, straightforward mechanism for

gene introduction. Chromosomal integration also allows

the insertion of precise numbers of the same or different

genes. This is particularly important for the regulated

expression of metabolic pathway genes.

Plasmid vectors

The three classes of autonomously replicating plasmids in

yeast are YRp, YEp, and YCp. All are S. cerevisiae/E. coli

shuttle vectors that typically carry a multiple cloning site

(MCS) for the insertion of expression cassettes. YRp vec-

tors carry a S. cerevisiae origin of replication (e.g. ARS

sequence) with no partitioning control. These are extre-

mely unstable (Murray & Szostak, 1983a; Da Silva & Bai-

ley, 1991) and not generally used for metabolic

engineering applications. In contrast, the widely used

YCp and YEp vectors have proven successful for many

applications. YCp (CEN/ARS) vectors carry both an ori-

gin of replication and a centromere sequence, have high

segregational stability in selective medium, and are main-

tained at 1–2 copies per cell (Clarke & Carbon, 1980).

YEp vectors are based on the S. cerevisiae native 2l epi-

somal plasmid and contain either the full 2l sequence or,

more commonly, a 2l sequence including both the origin

and the REP3 (STB) stability locus (Futcher & Cox, 1983;

Kikuchi, 1983). For the full sequence, use of a cir0 strain

lacking the native plasmid is recommended to prevent

the recombination between the vectors and to keep copy

number of the recombinant vector high. For the partial

2l plasmids, a cir+ host carrying the native 2l is required

to provide the transacting factors (REP1 and REP2)

required for stability. These vectors are generally more

structurally stable than the full 2l plasmids, but may be

maintained at lower copy number. Although the mainte-

nance of YEp vectors at 10–40 copies (Romanos et al.,

1992) is generally assumed, copy number is not con-

trolled and can vary widely with the gene product and

level of expression. Expression from a strong constitutive

promoter or synthesis/secretion of complex products can

reduce the average copy number and plasmid stability sig-

nificantly, or overload a pathway in the cell (e.g. Moore

et al., 1990; Ro et al., 2008; Fang et al., 2011). In extreme

cases, use of a CEN/ARS vector may give higher product

levels (Wittrup et al., 1994).

The general lack of yeast plasmids that are maintained

at very high copy number has led to the development of

2l-based vectors carrying selection markers such as

LEU2-d and URA3-d (Beggs, 1978; Erhart & Hollenberg,

1983; Loison et al., 1989). The defective promoters on the

markers result in an increase in copy number; hundreds

of copies have been reported in selective medium,

although these high copy numbers are not required for

viability (Lopes et al., 1991). Such vectors are generally

more useful for the overexpression of a product gene

than for metabolic engineering applications. However, Ro

et al. (2008) demonstrated the successful use of a plasmid

carrying the LEU2-d marker (and three pathway genes)

for the synthesis of artemisinic acid in nonselective, com-

plex medium.

Several vector series (Table 1) have been developed car-

rying a series of selection markers on YEp and YCp plas-

mids (and YIp integrating vectors discussed below). Ma

et al. (1987) constructed a series of YCp and YEp plas-

mids with LEU2, HIS3, LYS2, URA3, and TRP1 selection

markers. The YEplac and YCplac plasmids (Gietz & Sugi-

no, 1988) carry a MCS and URA3, TRP1, and LEU2 selec-

tion markers on both 2l- and CEN/ARS-based plasmids,

respectively. The pRS series (Sikorski & Hieter, 1989;

Christianson et al., 1992) are similar useful cloning vec-

tors with URA3, TRP1, HIS3, and LEU2 markers on both

2l and CEN/ARS plasmids. Brachmann et al. (1998) and

Taxis & Knop (2006) extended the pRS series to include

the MET15, ADE2, kanMX, hphNT1, and natNT2 select-

able markers. The various vector series have been widely

used for gene expression in yeast.

Groups of vectors carrying constitutive and inducible

promoters have also been developed (Table 1). These

include the variants of the pRS series carrying ADH1,

TEF1, GPD1, MET25, CYC1, GAL1, and GALL or GALS

(GAL1 variant) promoters (Mumberg et al., 1994, 1995)

and the CUP1 promoter (Labbe & Thiele, 1999). Cart-

wright et al. (1994) developed YEp and YCp expression

vectors carrying a URA3 selection marker and the PGK,

GAL1, GAL10, PHO5, and CUP1 promoters. The YEplac

and YCplac plasmids were modified to carry the tetracy-

cline-responsive tet-on/off promoters (Gari et al., 1997).
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The commercially available pYES and pYC series (Invitro-

gen) offer expression from the GAL1 promoter on 2l or

CEN/ARS vectors, respectively. These vectors are available

with URA3, TRP1, and blasticidin resistance selection

markers. The pGREG vectors (Jansen et al., 2005) are

derivatives of the pRS series with five different selectable

markers on CEN/ARS-based plasmids with a GAL1 pro-

moter and can be useful tools for plasmid construction

via in vivo recombination and for the expression of

N- and C-terminal-tagged fusion proteins (nine tags

available). Vectors series such as those by Funk et al.

(2002), Van Mullem et al. (2003), Geiser (2005), and

Alberti et al. (2007) have been constructed utilizing the

GatewayTM cloning technology (Invitrogen, review by

Walhout et al., 2000), a versatile method that allows for

the insertion of ORFs into vectors by in vitro recombina-

tion using the bacteriophage lambda att sites. The vector

series contain various promoters and selection markers,

2l or CEN/ARS sequences, and additional features such

as epitope tags. Recently, Fang et al. (2011) constructed a

series of 32 pXP shuttle vectors, utilizing three constitu-

tive promoters, PGK1, TEF1, and HXT7-391, and six

reusable selection markers on both 2l and CEN/ARS vec-

tors. These vectors can be used as templates for gene inte-

gration as described below. M.W.Y. Shen, F. Fang, S.

Sandmeyer & N.A. Da Silva (unpublished data) have

extended this series to include the GAL1, ADH2, and

CUP1 promoters.

These various vector series have been widely used for

introducing single genes and also multiple genes for met-

abolic engineering in S. cerevisiae. Jiang et al. (2005)

introduced a vector built from pYES expressing three

genes for the biosynthesis of naringenin. Yan et al. (2005)

introduced four genes for this pathway onto a single plas-

mid built from YEplac. Despite the presence of four

GAL1 promoters on the same vector, no structural insta-

bility was observed for the 65 h of culture. However,

repetitive sequences on a plasmid can be an issue as seen

in the work by Verwaal et al. (2007) on carotenoid syn-

thesis in S. cerevisiae, where significant structural instabil-

ity led to the decision to integrate the genes. Leonard

et al. (2005) introduced a 2l plasmid carrying four genes

and a CEN/ARS vector carrying three genes (built from

YEplac and YCplac, respectively) for flavone biosynthesis.

Carlson & Srienc (2006) used modified versions of the

pRS vectors to engineer S. cerevisiae for the production of

the biopolymer poly[(R)-3-hydroxybutyrate] (PHB). Two

plasmids (one containing the bidirectional GAL1-GAL10

promoter) were used to express three pathway genes.

These are just a few examples of the widespread use of

such vector series for metabolic pathway engineering.

Vectors carrying two or more promoters allow the

expression of more than one gene on a single plasmid.

The bidirectional promoter plasmid series pBEVY and

pBEVY-G were constructed by Miller et al. (1998) and

have the TDH3 and ADH1 promoters (constitutive), or

the GAL1-GAL10 (galactose-inducible) promoters, on 2l
vectors with four different selectable markers. Li et al.

(2008) extended this series to include eight new 2l-based
pY2x-GAL(1/10)-GPD plasmids; these carry an inducible

GAL1 or GAL10 promoter and a constitutive TDH3 pro-

moter with four different markers. The pESC vector series

is commercially available (Agilent Technologies) and has

the bidirectional GAL1-GAL10 promoter cassette on 2l-
based vectors carrying one of the four selectable markers.

The recently described pSP-G1 and pSP-G2 vectors (Par-

tow et al., 2010) carry the constitutive TEF1 and PGK1

promoters in two different orientations; these are based

on the original pESC-URA3 plasmids and aimed at high-

level expression in yeast. All of these vectors allow the

expression of two genes from the same construct, avoid-

ing the need to carry two different plasmids in the cell.

Vectors carrying bidirectional promoters are thus very

useful for metabolic engineering in S. cerevisiae. In partic-

ular, pESC variants carrying the bidirectional GAL1-

GAL10 promoters have been used to express two to four

genes on a single 2l plasmid. Kim et al. (2011) used a

pESC vector to evaluate the expression of pathway genes

on the biosynthesis of ceramides. Maury et al. (2008)

introduced the bacterial isoprenoid pathway into S. cere-

visiae with eight genes carried on two plasmids (four

genes under the control of two bidirectional promoters

per plasmid).

To introduce multiple genes simultaneously, yeast arti-

ficial chromosomes (YACS) may be useful. Originally

described by Murray & Szostak (1983b), these vectors

carry an origin of replication, a centromere sequence, and

telomeres and can be constructed by both in vivo recom-

bination and in vitro ligation of the DNA fragments

(Burke et al., 1987). Because of their ability to carry large

fragments of DNA, such vectors have been useful in

studying genomes, but can also be used to carry large

pathway constructs on a single new ‘chromosome’. In a

recent study by Naesby et al. (2009), eYACs (expressible

yeast artificial chromosomes) were used to randomly

assemble a group of genes for a seven-step flavonoid

pathway. Fifty percent of the clones produced naringenin

when grown in the presence of coumaric acid. Stability

was comparable to normal YACS, and flavonoid produc-

tion was maintained for more than 50 generations.

Chromosomal integration of genes

Plasmid vectors are ideal for the overexpression of genes

at ‘high’ (YEp) or ‘low’ (YCp) levels and are convenient

and easy to use. In combination with integrated genes,
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plasmids allow a quick assessment of the degree of over-

expression required in a pathway. However, two or more

2l and/or CEN/ARS vectors can be difficult to stably

maintain simultaneously in a single cell (Futcher & Car-

bon, 1986; Mead et al., 1986). For the introduction of

multiple genes, long-term stability, and precise control of

expression, integration of the genes into the chromosome

holds several advantages.

The ease of homologous recombination in S. cerevisiae

(Oldenburg et al., 1997; Raymond et al., 1999; Schaerer-

Brodbeck & Barberis, 2004; Gibson et al., 2008) makes

genomic integration an attractive method for the

introduction of pathway genes. A variety of vector- and

PCR-based methods have been developed for single- or

multicopy integration. In combination with reusable

selection markers and characterized integration sites,

chromosomal integration provides precise control over

gene copy number and can ensure segregational stability.

Integration may not be ideal for the overexpression of

genes but is a key method for metabolic engineering in

yeast. Important issues include the ease of gene integra-

tion and selection, stability of the inserts, and the ability

for multiple simultaneous or sequential integrations (e.g.

by marker recycling).

Vector-based gene integration

Yeast integrating plasmids (YIp) are vectors that carry a

MCS, selection marker, target site(s), and no replication

origin. These cannot be maintained in the cell unless inte-

grated into the chromosomes. Depending on the position

of the target sequences, integration into the genome can

occur via single-crossover (Fig. 1a) or double-crossover

(Fig. 1b) homologous recombination. For single-cross-

over, the vector is linearized within the target sequence.

Integration results in duplicated sequences flanking the

insert; this can result in structural instability as excision

can occur via homologous recombination at these sites.

For double-crossover integration (gene conversion and

omega integration), the cassette to be integrated is

inserted within the target sequence and the vector is line-

arized outside of this sequence. The genomic insertions

are structurally stable as no duplicate sequences occur

upon integration. The efficiency of integration via dou-

ble-crossover is lower relative to single-crossover events,

and construction of the vectors can be more difficult.

YIp vector series (Gietz & Sugino, 1988; Sikorski &

Hieter, 1989; Cartwright et al., 1994; Alberti et al., 2007;

Sadowski et al., 2007) have been developed carrying a ser-

ies of auxotrophic markers that also act as target

sequences, and integration occurs by a single-crossover

event. In addition to the standard YIp vectors, useful

variants have been developed through the incorporation

of resistance selection markers, reusable selection markers,

and repeated target sites. Use of a resistance gene, such as

the bacterial neor for resistance to the aminoglycoside

G418 in S. cerevisiae (Jimenez & Davies, 1980), allows the

selection of multiple simultaneous integrations through

G418 selection. The success at obtaining multiple inser-

tions is because of the weak expression of the bacterial

resistance gene and increased concentrations of the G418.

Selection via resistance to G418 and other compounds (e.

g. hygromycin and zeocin) can be particularly effective

when combined with repetitive target sequences including

the Ty1 elements, the ribosomal DNA cluster, and delta

elements (Kingsman et al., 1985; Lopes et al., 1989; Fujii

et al., 1990; Sakai et al., 1990, 1991).

Delta (d) elements are the long terminal repeats (LTRs)

of the S. cerevisiae Ty1 and 2 retrotransposons (Boeke,

1989; Boeke & Sandmeyer, 1991). Based on the sequence

of strain S288C (Goffeau et al., 1996), there are several

hundred delta elements dispersed in the S. cerevisiae

chromosomes as solo d elements or associated with Ty

elements (Dujon, 1996; Kim et al., 1998; Wyrick et al.,

2001). The multiple possible integration locations in com-

bination with G418 or ethionine selection have led to a

high efficiency of multicopy integration in a single trans-

formation. A range of integrations (up to 80) has been

reported using this method (Shiomi et al., 1995; Parekh

et al., 1996; Wang et al., 1996; Lee & Da Silva, 1997a).

Despite the large number of available sites, the majority

of inserts are in long tandem repeats at one location.

While the method is easy to employ, there are two major

drawbacks: (1) the method can generally be used only

once or twice (repeated G418 selection tends to lead to

other mutations allowing resistance, not higher integrated

copy number) and (2) the tandem nature of the integra-

tions can lead to high instability, particularly following

induction or for products that place a burden on the cell

(Wang et al., 1996; Lee & Da Silva, 1997a). However, this

method has been shown to be quite effective for optimiz-

ing gene copy number when an inducible GAL promoter

and late induction of gene expression are combined

(Parekh & Wittrup, 1997; Shusta et al., 1998). An exam-

ple of the use of d-neo method for pathway engineering

is the integration of cellulase and b-glucosidase for the

conversion of cellulose to ethanol (with no instability

observed) (Cho et al., 1999). This method is not ideal for

introducing precise numbers of a group of different

genes.

d elements have been chosen as the target site for sev-

eral integration methods (discussed below) and success-

fully applied for pathway engineering. A recent novel

approach, ‘cocktail d-integration’, was used to create

strains for the surface expression of b-glucosidase, endo-
glucanase, and cellobiohydrolase (Yamada et al., 2010).
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Three successive rounds of cotransformation of the three

integrating vectors were performed (using a different

selection marker for each round: URA3, HIS3, and

TRP1), with different numbers of each gene integrated in

each transformation. This allowed the creation of a group

of strains and selection of an optimum strain for PASC

(phosphoric acid–swollen cellulose) degradation.

The incorporation of reusable selection markers enables

multiple sequential gene integrations owing to marker

recycling. These markers include a selection gene flanked

by direct repeats allowing excision by homologous recom-

bination. Because spontaneous loss by recombination is a

low-frequency event, counterselectable markers are gener-

ally used, enabling easy selection of cells that have lost

the marker. In combination with a repetitive target site

(e.g. a d sequence), multiple integrations of the same (or

different) gene are possible with the one general vector

construct. Lee & Da Silva (1997b) developed an integrat-

ing vector carrying the reusable URA3 blaster cassette

(developed by Alani et al. (1987) for multiple gene

knockouts) and the Ty1 d sequence. Genes are integrated

sequentially, and URA3 marker excision is selected using

5-FOA (Boeke et al., 1984) after each vector (or partial

vector) insertion. Expression is generally linearly corre-

lated with the number of integrations (Lee & Da Silva,

1997b, 2006). A major advantage of this method is the

dispersed nature of the genes, resulting in much higher

stability than with tandem inserts. Disadvantages are the

length of time required for multiple integrations and

knockouts and the need for Southern blots or qPCR to

Fig. 1. (a) Vector integration into a chromosome via single-crossover integration. The vector is linearized within the target sequence (black

arrow) prior to integration. (b) Vector integration into a chromosome via double-crossover integration. The cassettes to be integrated are inserted

within the target sequence on the vector, and the vector is linearized outside of the target sequence prior to integration. (c) Integration of a

linear DNA fragment (e.g. PCR product) with homology at 5′ and 3′ ends. (d) In vivo recombination and integration of nested DNA fragments.
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determine the number of insertions (as the exact delta

location is not specified). The integrations via this vector

are also single-crossover events that lead to approximately

300 bp delta repeats on either side. While much more

stable than tandem insertions, loss of the inserts can

occur with time. A double-crossover version of the vector

(Fig. 1b) was developed by placing the integration cas-

sette within the d element and linearizing outside of this

sequence prior to transformation (Ching, 2005). While

successful for the integration of a series of different genes,

integrations of multiple copies of the same gene were not

possible due to the large homologies; during subsequent

integrations, replacements of genes/marker at the same

location as the previous integration were selected.

The combination of delta target site and reusable selec-

tion cassette has been successfully applied for the engi-

neering of strains for the synthesis of a variety of

compounds. Examples include the engineering of S. cere-

visiae for the production of 1,2-propanediol (Lee & Da

Silva, 2006) and, in combination with plasmids, for the

synthesis of artemisinic acid (Ro et al., 2006).

Several other reusable selection markers have been

developed. Particularly powerful are those with an active

recombination system for marker recycling (Prein et al.,

2000; Johansson & Hahn-Hagerdal, 2002; Radhakrishnan

& Srivastava, 2005). In these cases, the marker need not

be counterselectable. The Cre/loxP and FLP/FRT systems

(Sauer, 1987; Sauer, 1994; Guldener et al., 1996; Guelden-

er et al., 2002; Radhakrishnan & Srivastava, 2005) have

been successfully applied in yeast. In the former, the

selection marker is flanked by loxP sequences, and the

expression of the Cre recombinase allows extremely effi-

cient marker excision. Multiple markers can be excised

simultaneously, significantly decreasing the time for strain

construction. The small footprint of the loxP sequence

also reduces the chance of off-target homologous recom-

bination during subsequent integrations.

PCR-based gene integration

PCR-generated fragments have been widely used for gene

knockouts (and gene knockins) in yeast (Langle-Rouault

& Jacobs, 1995; Lorenz et al., 1995; Manivasakam et al.,

1995; Goldstein et al., 1999; Gueldener et al., 2002). In

recent years, integration of PCR-generated fragments has

been a key method for the insertion of pathway genes

into the yeast genome and the generation of libraries

(Schaerer-Brodbeck & Barberis, 2004; Shao et al., 2009).

The ease of homologous recombination in S. cerevisiae

and the reduction in time and effort make this a pre-

ferred approach in many instances. Use of one of the

many high-fidelity polymerases allows errors during PCR

to be minimized, and genomic inserts can be recovered

to confirm the correct sequence. In addition, insertions

typically occur by double-crossover integration leading to

the construction of stable strains (Fig. 1c).

In S. cerevisiae, homologous recombination requires

only limited flanking homology (Manivasakam et al.,

1995). Efficient targeting increases with the length of the

homology, and an overlap of approximately 50 bp (25 bp

on each side) is sufficient to easily screen and recover

integrants in specific genomic locations. Standard length

primers can thus be used to amplify a desired gene cas-

sette with flanking target regions, and the PCR product

can be transformed into the yeast for insertion by dou-

ble-crossover. The efficiency of recombination in yeast

also allows the use of nested primers or the assembly of

two or more fragments (Fig. 1d) (Erdeniz et al., 1997;

Hawkins & Smolke, 2008; Flagfeldt et al., 2009; Shao

et al., 2009).

The pXP vector series mentioned earlier (Fang et al.,

2011; M.W.Y. Shen, F. Fang, S. Sandmeyer & N.A. Da

Silva, unpublished data) was designed to allow the seam-

less transition from plasmid-based (2l or CEN/ARS)

expression to PCR-based chromosomal gene integration.

All selection markers on the vectors are flanked by loxP

sequences to allow marker recycling following integration.

The promoter-gene-terminator and selection cassettes can

be amplified using standard priming sequences with over-

hangs to target specific chromosomal sites. Although less

efficient than traditional vector-based integration where

homologies are typically much longer, transformants can

be rapidly screened via colony PCR to select the correct

integration location. This system can be used for multiple

sequential (and possibly simultaneous) gene integrations

and multiple simultaneous marker excisions, and is thus

a useful tool for pathway engineering. These vectors have

now been utilized for the insertion of metabolic pathway

genes in several studies currently underway in our labora-

tory, including the modification of central carbon metab-

olism, polyketide production, and arsenic uptake and

sequestration (unpublished results).

Shao et al. (2009) made use of the efficiency of recom-

bination in yeast to develop the DNA Assembler method

for the insertion of entire pathways into the yeast genome

(or onto plasmids). Expression cassettes are assembled

and integrated in a single step, and large inserts of up to

19 kb have been successfully inserted demonstrating the

promise of this tool for metabolic engineering. A group

of different promoters and terminators were utilized to

avoid repetitive sequences and subsequent instability of

the inserts. The yeast Ty1 delta sequence was chosen as

the insertion site, and integration occurs by single-cross-

over integration into one of the hundreds of potential

target sites in the yeast chromosomes, contributing to the

high efficiency reported. The method has been applied for
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the introduction of a 3-gene xylose utilization pathway, a

5-gene zeaxanthin biosynthesis pathway, and the two

pathways together (at one site) (Shao et al., 2009).

The insertion of metabolic pathways via independent

gene integration requires multiple target sites that provide

well-characterized expression levels for the inserted genes.

Traditional target integration sites have been nutritional

marker genes (e.g. URA3, TRP1, and LEU2), although a

variety of other locations have also been utilized. Prior

work on single-crossover integration into the delta

sequences (Lee & Da Silva, 1997b, 2006) found similar

expression levels for multiple different integrations; how-

ever, the specific delta sites used were not determined.

Two recent studies have focused on the expression of

reporter genes following integration (and full target

replacement) at a group of well-defined sites. Using the

pXP vectors as templates and primers containing target-

ing regions, Fang et al. (2011) compared the expression

of the luciferase gene under the control of the strong

PGK1 promoter (PPGK1-Rluc-TCYC1 cassette) at 14 differ-

ent locations. The expression cassette replaced URA3,

MET15, LEU2, TRP1, seven full-length Ty elements (two

with replacements in both orientations), and one full-

length Ty3 element. Similar levels of expression were

observed at the locations studied, with a maximum differ-

ence of approximately 50% in luciferase fluorescence. The

values were approximately 60% of that on a CEN/ARS

vector, as expected based on a plasmid copy number of 1

–2. In another recent study by Flagfeldt et al., 2009,

expression of lacZ under the control of the two strong

TEF1 and ACT1 promoters (PTEF1-lacZ-TCYC1 and PACT1-

lacZ-TCYC1 cassettes) was compared at 20 different loca-

tions: replacements of URA3, SPB1/PBN1, PDC6, and 17

different solo LTRs. Similar levels were observed for the

three gene replacements, but up to eightfold differences

were observed at the LTR locations. These results were

consistent for both promoters. In combination, the two

studies provide 31 characterized sites for gene integration

and also demonstrate the importance of evaluating new

integration sites prior to utilizing them for gene insertion

and expression.

Regulation of expression level via
promoter choice

A wide variety of promoters are available for the control

of transcription level in S. cerevisiae, including constitu-

tive and inducible promoters of various strengths. In this

review, the term ‘constitutive’ will be used broadly as sev-

eral such promoters have a dependence on glucose level

(e.g. transcription drops as glucose is exhausted) and

growth phase. The regulated promoters will include those

for which a higher level of control is possible or a clear

inducer/repressor exists. Choice of promoter in combina-

tion with gene number allows a very wide range of gene

expression levels.

A useful analysis tool to facilitate a systematic overview

of available promoters and regulatory elements in S. cere-

visiae is available on SCPD (The Promoter Database of

S. cerevisiae) by Zhu & Zhang (1999) at http://rulai.cshl.

edu/SCPD/. The database offers information on approxi-

mately 6223 open reading frames and can be used to

study the yeast transcription factor binding sites.

Constitutive promoters and promoter series

Constitutive promoters have been widely used for con-

trolling gene expression in S. cerevisiae. These promoters

offer simplicity (no inducers or repressors needed) and

relatively constant levels of expression. This may be

desired for the introduction of new pathways in yeast,

particularly if the pathway must be active during cell

growth. Constitutive promoters may not be ideal for the

synthesis of deleterious gene products or when separation

of growth and production are desired. Plasmid stability

and copy number can also be an issue, particularly when

a strong constitutive promoter is used. Mumberg et al.

(1995) found that the ratio of b-galactosidase expression

between 2l and CEN/ARS vectors was 30 for the ADH1

promoter, but only three for the stronger GPD promoter.

In a study by Fang et al. (2011), when Rluc was expressed

using a PGK1 promoter on a URA3-marked 2l-based
vector, copy number was 5.6 (vs. 11.6 for the empty vec-

tor).

The most widely used constitutive promoters have often

been from the yeast glycolytic pathway. These glucose-

dependent promoters include those for phosphoglycerate

kinase PPGK1 (Holland & Holland, 1978; Ogden et al.,

1986), pyruvate decarboxylase PPDC1 (Kellermann et al.,

1986), triosephosphate isomerase PTPI1 (Alber & Kawasaki,

1982), alcohol dehydrogenase I PADH1 (Hitzeman

et al., 1981; Denis et al., 1983), glyceraldehyde-

3-phosphate dehydrogenase PTDH3 (GAP491) or PGPD (Hol-

land & Holland, 1980; Bitter & Egan, 1984; McAllister &

Holland, 1985), and pyruvate kinase PPYK1 (Nishizawa

et al., 1989). The constitutive promoter for translation

elongation factor PTEF1 (Gatignol et al., 1990) has also

been widely used and has recently been modified by error-

prone PCR to provide a group of promoters offering a

range of expression levels (Alper et al., 2006a; Nevoigt

et al., 2006). Other commonly used native promoters

include PCYC1 (Guarente et al., 1984), PACT1 (Gallwitz &

Seidel, 1980), PMFa1 (Brake et al., 1984), and those for hex-

ose transport, for example PHXT7 (Reifenberger et al.,

1995; Diderich et al., 1999) – although this list is by no

means exhaustive. Constitutive promoters have been suc-
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cessfully employed for metabolic pathway engineering in

yeast; examples include for ammonia assimilation (Roca

et al., 2003), xylose metabolism (Ho et al., 1998; Shao

et al., 2009), arabinose metabolism (Becker & Boles, 2003;

Wisselink et al., 2007), and malic acid production (Zelle

et al., 2008).

Several variants of these promoters have been devel-

oped in order to change response to glucose or to allow

inducibility. The 1500-bp promoter PADH1 (Denis et al.,

1983) is activated during growth on glucose and is down-

regulated following glucose depletion and during ethanol

consumption. A short variant of the promoter (PADH1s)

with a deletion of 1100 bp in the upstream sequence

shifts expression to the early ethanol growth phase with

activity increasing into the late ethanol consumption

phase (Ruohonen et al., 1991). Restoring 300 bp of the

upstream fragment resulted in a ‘middle’ ADH1 promoter

(PADH1m) that is activated in early exponential growth

and maintains activity into the late ethanol consumption

phase (Ruohonen et al., 1995). A common approach to

confer regulation is to fuse the UAS region from induc-

ible promoters upstream of constitutive promoters and

therefore render the hybrid promoter responsive to tem-

perature (Walton & Yarranton, 1989) or inducer metabo-

lites and ions (Bitter & Egan, 1988; Hinnen et al., 1989;

Purvis et al., 1991).

Several methods for developing ‘synthetic promoter

libraries’ for the modulation of gene expression are in

place (Jensen & Hammer, 1998; Alper et al., 2006a; Ham-

mer et al., 2006; De Mey et al., 2007). For example,

mutagenesis of the constitutive PTEF1 promoter sequence

(Alper et al., 2006a; Nevoigt et al., 2006) by error-prone

PCR resulted in the selection of 11 mutant promoters

with strengths ranging between 8% and 120% that of the

native PTEF1. The same technique has been extended to

optimizing the regulatory properties of the oxygen-

responsive DAN1 promoter in S. cerevisiae (Nevoigt et al.,

2007) where two mutant promoters with quicker induc-

tion and improved expression levels were isolated.

Another successful method for synthetic promoter library

(SPL) creation described by Jensen & Hammer (1998) is

based on saturation mutagenesis of the nucleotide spacer

regions flanking key promoter elements. Jeppsson et al.

(2003) successfully employed this technique to generate a

promoter library called YRP, using the RPG (Nieuwint

et al., 1989) and CT (Baker, 1991) regulatory elements

and the CUP1 promoter, to control the expression level

of glucose-6-phosphate dehydrogenase between 0% and

179% of the wild type.

In contrast to the creation of promoter libraries, the

multiple-gene-promoter-shuffling (MGPS) method devel-

oped by Lu & Jeffries (2007) can be used to achieve the

optimal levels of overexpression of several genes at once,

thereby allowing synergistic control over several rate-lim-

iting steps and metabolic flux.

Regulated promoters

Regulated promoters enable control over the timing and

level of gene expression. They are thus more suitable

when expression of genes is desired at a specific stage of

cell growth, or to prevent the build-up of toxic pathway

intermediates. The use of inducible promoters is limited

by the sensitivity of the promoter to the inducer (includ-

ing the strength and time for response to the inducer or

repressor), background levels of expression because of

‘leaky’ promoters, and the cost of metabolites for induc-

tion. In addition, strain response to the inducer may add

to the complexity of expression control.

A large variety of regulated native or engineered pro-

moters have been successfully used to control the gene

expression in S. cerevisiae. The most tightly regulated

native promoters are from the galactose-inducible S. cere-

visiae genes GAL1, GAL7, and GAL10 (Douglas & Haw-

thorne, 1964; Bassel & Mortimer, 1971). These promoters

are induced approximately 1000-fold in the presence of

galactose and strongly repressed in the presence of glu-

cose (Adams, 1972). While several genes have been iden-

tified to be involved in the regulation of these promoters,

the GAL4 gene encoding a transactivator and GAL80 gene

encoding the repressor for Gal4 control the central regu-

lation mechanism along with the GAL upstream activa-

tion site (UAS) (Johnston et al., 1994). Modifications in

the GAL1 and GAL10 promoters (Li et al., 2008) and

engineering key enzymes involved in galactose catabolism

and transport (Hawkins & Smolke, 2006, 2008) have pro-

vided tunable control to galactose-driven expression

under these promoters. The GAL-regulated promoters

have been widely used in yeast metabolic pathway engi-

neering, including for artemisinic acid synthesis (Ro

et al., 2006), increased acetyl-CoA synthesis for isopren-

oid production (Shiba et al., 2007), expression of the bac-

terial isoprenoid pathway in S. cerevisiae (Maury et al.,

2008), and n-butanol synthesis (Steen et al., 2008).

The S. cerevisiae CUP1 promoter contains four metal

regulatory elements and controls the expression of copper

metallothionein in yeast. PCUP1 can be induced around

20-fold in the presence of Cu2+ (Etcheverry, 1990). The

activation of this promoter is independent of other cul-

ture parameters, with ionic concentration being the limit-

ing factor based on the copper resistance of the host

strain (Macreadie et al., 1991; Hottiger et al., 1995; Labbe

& Thiele, 1999). Jeppsson et al. (2003) achieved a range

of expression levels driven by the CUP1 promoter using

the aforementioned SPL technique. The CUP1 promoter

has also been used to express pathway genes in yeast, for
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example, for the synthesis of 1,2-propanediol (Lee & Da

Silva, 2006).

The S. cerevisiae ADH2 promoter (573 bp) is tightly

regulated by glucose repression, with over a 100-fold

repression in the presence of glucose (Price et al., 1990).

This promoter requires no inducer, as expression begins

as glucose is depleted and ethanol consumption begins.

Two UASs contained in a 260-bp region upstream of the

initiation site have been identified to render a fully active

and regulatable PADH2. Cultivation in complex medium is

required for high-level expression from PADH2 (Price

et al., 1990; Lee & Da Silva, 2005); however, because the

promoter is off until glucose levels fall, plasmid stability

is usually not a major issue. The promoter has been suc-

cessfully employed for several metabolic engineering stud-

ies, including the synthesis of polyketides (Kealey et al.,

1998; Mutka et al., 2006; Lee et al., 2009) and triacetic

acid lactone (Xie et al., 2006) in S. cerevisiae.

Several other inducible S. cerevisiae promoters have

been employed in yeast including PPHO5, PMET25, and

PMET3. The PHO5 promoter of the acid phosphatase gene

is regulated by inorganic phosphate (Pi) in the medium

with approximately 200-fold repression in the presence of

phosphate. The MET25 gene (Sangsoda et al., 1985;

Kerjan et al., 1986) encodes O-acetyl homoserine sulfhy-

drolase, and the MET3 gene encodes ATP sulfurylase

(Cherest et al., 1987). Both promoters are repressed in

the presence of methionine or S-adenosylmethionine.

One of the most useful heterologous promoter systems

in yeast utilizes the bacterial tetracycline operator (tetO)

and hybrid transactivator, based on the expression system

developed for mammalian cells (Gossen & Bujard, 1992;

Gossen et al., 1995) and shown to be active in yeast by

Dingermann et al. (1992). Gari et al. (1997) constructed

a set of expression vectors with a hybrid promoter system

tetO-CYC1 consisting of seven or fewer tetO boxes, the

S. cerevisiae CYC1 TATA region, and tTA activator deriv-

atives (tetR-kcI-VP16), with a 1000-fold induction ratio

in the absence of tetracycline. The strongest system thus

developed has expression levels comparable with that of

the GAL1 promoter. Another study by Murphy et al.

(2007) demonstrates the applicability of the tetO2 opera-

tor in the design of combinatorial promoters. Belli et al.

(1998) developed a tetR regulator–based expression sys-

tem that allows for tight tetO-driven expression in a dual

(tetracycline-repressible and inducible) manner.

Comparisons of promoter strength

A number of studies have compared the strengths of the

common constitutive and regulated promoters using gene

cassettes either carried on plasmids or integrated into the

genome. The latter comparisons are particularly useful as

they control for both gene stability and copy number.

While the comparisons will depend on the specific gene

expressed from the promoters, useful trends have been

observed and can be used as a guide for fine-tuning gene

expression in metabolic engineering applications. These

studies (including the rank order of promoter strengths

determined in each study) are summarized in Table 2.

Several promoter comparisons evaluated the expression

levels from plasmid-based constructs. Mumberg et al.

(1995) compared four constitutive promoters of varying

strengths (PADH1, PCYC1, PTDH3, and PTEF1) on both CEN/

ARS- and 2l-based plasmids using E. coli lacZ as the

reporter gene during growth in glucose medium. Only a

5-fold difference was observed in the expression level of

the strongest promoter (PTDH3) for the 2l plasmid as

compared to the CEN/ARS plasmid. The truncated ver-

sion of the PCYC1 promoter used in this study lacks the

UAS2 sequence and thereby showed weakest activity.

Monfort et al. (1999) compared the strength of the four

constitutive promoters PPGK1, PADH1s, PADH1m, and PTDH1

(Hadfield et al., 1993) using Geotrichum candidum lipase2

as a reporter from 2l-based plasmids using the constitu-

tive PACT1 as a control. The results of their studies con-

sidered distinct phases of cell growth during glucose

consumption, early ethanol consumption, and late etha-

nol consumption (where only PADH1s remained active).

Fang et al. (2011) did a similar comparison using three

relatively strong constitutive promoters PPGK1, PTEF1, and

PHXT7-391 on the pXP vector series using Renilla luciferase

as the reporter protein during exponential growth in glu-

cose medium. Further, the authors identified an inverse

relationship between the promoter strength and plasmid

copy number.

Additional studies evaluated the promoters for the

expression of secretory proteins. Park et al. (1993) com-

pared constitutive promoters PPGK1 and PSUC2 and galac-

tose-inducible promoter PGAL7 for the production of

secreted a-amylase in fed-batch cultures. Cartwright et al.

(1994) compared the levels of secreted SPb-lactamase

(SPbla) during late exponential growth on various carbon

sources when five different promoters (PGAL1, PGAL10,

PPGK1, PPHO5, and PCUP1) were used. The difference in

expression between YEp-SPB and YCp-SPB was found to

be 5-fold for the GAL promoters, 13-fold for PPGK1, 15-

fold for PPHO5, and 10-fold for PCUP1.

A key comparison of seven constitutive promoters

(PPGK1, PTEF1, PTDH3, PTPI1, PPYK1, PADH1, and PHXT7) was

made by Partow et al. (2010) using lacZ as the reporter

gene. In this study, the expression cassettes were inte-

grated at a single copy into the URA3 locus of the yeast

genome ensuring both stability and constant copy num-

ber. Similar to the plasmid-based study by Monfort et al.

(1999), the strengths of the promoters were assessed at
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different stages of growth (glucose or ethanol consump-

tion). In an earlier study by Hauf et al. (2000), five of these

promoters as well as PENO2 and PPDC1 were compared dur-

ing growth on ethanol using single-copy integrated cas-

settes. Partow et al. (2010) also compared the constitutive

promoters with the GAL1 and GAL10 promoters in fed-

batch or continuous culture. The result for the GAL1-

GAL10 promoter comparison, PGAL10 > PGAL1 (Table 2), is

in contrast to earlier studies comparing these promoters

(Yocum et al., 1984; West et al., 1987; Da Silva & Bailey,

1991; Cartwright et al., 1994). The authors note that the

difference in reporter gene cloning sites used in this study

may affect the translational efficiency. This observation is

supported by Crook et al. (2011); the authors show that

the distance between the promoter and gene because of the

MCS can result in significant mRNA secondary structure

in the 5′ untranslated region, thereby affecting translational

efficiency. Further differences in protein translation were

observed with the length, codon optimization, or reporter

gene (yECitrine, eGFP, and LacZ) used.

In another study evaluating the strength of inducible

promoters, Lee & Da Silva (2005) compared the expression

levels under PADH2, PGAL1, and PCUP1 for a single integrated

copy of the lacZ gene into the delta sequences and also

looked at induction at various culture times. Early induc-

tion was better suited to PCUP1 and late induction for

PGAL1. In recent studies in our laboratory, expression from

PPGK1, PADH2, PGAL1, and PCUP1 was compared on both

plasmids (CEN/ARS and 2l-based) and from single inte-

grated copies (each replacing the same Ty1 locus in the

chromosomes) using the extended pXP vector series

described earlier (M.W.Y. Shen, F. Fang, S. Sandmeyer &

N.A. Da Silva, unpublished data). In these studies, identical

sequences separated the native promoter from the start

codon of lacZ, and b-galactoside levels were compared at

12-h intervals up to 48 h.

A summary of all promoter comparison studies

described is presented in Table 2. Much greater detail on

the studies can be found in the listed references.

Conclusions

Metabolic engineering requires the introduction of multi-

enzyme pathways and precise control over the expression

of the associated genes. This MiniReview has focused on

two key elements in regulating enzyme synthesis in S. ce-

revisiae, both at the pretranslation level: (1) gene intro-

duction/control of gene number and (2) choice of

promoter (both strength and regulation). A large number

of approaches are available to modulate the expression at

these points, and the combination of copy number con-

trol and promoter choice allows a wide range of expres-

sion levels for pathway genes.

We have also included several examples of the use of

vectors, chromosomal integration, constitutive promoters,

and inducible promoters for pathway engineering in S.

cerevisiae. This is only a small sampling of the numerous

studies described in the literature and does not include

many studies that combine multiple different approaches.

For example, constitutive and inducible promoters have

been employed together to control gene expression at

specific times during the culture. In addition, combina-

tions of multiple promoters, gene knockouts, gene inte-

gration, and plasmids have been used to introduce

complex pathways. One classic example is the engineering

of yeast to produce hydrocortisone from glucose (Szcze-

bara et al., 2003).

There are several other important factors influencing

protein levels in S. cerevisiae that have not been addressed

in this MiniReview, including additional factors at the

transcription level and those modulating translation and

post-translational processing. These range from transcrip-

tion factor engineering (e.g. Alper et al., 2006b) and

mRNA stability (e.g. the RNA control modules described

by Babiskin & Smolke, 2011) to translation efficiency and

protein stability. All provide additional levels of regula-

tion that, with gene number and promoter choice, con-

tribute to the fine tuning of enzyme levels needed for

metabolic pathway engineering.
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