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Abstract During the proteomics period, the growth in the
use of recombinant proteins has increased greatly in the
recent years. Bacterial systems remain most attractive due to
low cost, high productivity, and rapid use. However, the
rational choice of the adequate promoter system and host for
a specific protein of interest remains difficult. This review
gives an overview of the most commonly used systems: As
hosts, Bacillus brevis, Bacillus megaterium, Bacillus sub-
tilis, Caulobacter crescentus, other strains, and, most
importantly, Escherichia coli BL21 and E. coli K12 and
their derivatives are presented. On the promoter side, the
main features of the L-arabinose inducible araBAD pro-
moter (PBAD), the lac promoter, the L-rhamnose inducible
rhaPBAD promoter, the T7 RNA polymerase promoter, the
trc and tac promoter, the lambda phage promoter pL, and
the anhydrotetracycline-inducible tetA promoter/operator
are summarized.

Introduction

The production of recombinant proteins in a highly purified
and well-characterized form has become a major task for
the protein chemist within the pharmaceutical industry
(Schmidt 2004). Bacterial expression systems for heterolo-
gous protein production are attractive because of their
ability to grow rapidly and at high density on inexpensive
substrates, their often well-characterized genetics and the
availability of an increasingly large number of cloning
vectors and mutant host strains. To produce high levels of

protein, it is often useful to clone the gene downstream of a
well-characterized, regulated promoter.

In general it is difficult to decide which host and
promoter system is the best for heterologous protein
production. It depends often on the target protein itself.
This review describes a variety of bacterial host and
promoter systems widely used for heterologous protein
production. Nevertheless many bacterial systems are not
able to modify proteins posttranslationally such as glyco-
sylation. If the posttranslational modification is essential for
bioactivity, bacterial expression systems should not be used
for heterologous protein production. Alternative hosts such
as yeasts, filamentous fungi, or insect and mammalian cell
cultures are available for this application (reviewed in
Schmidt 2004).

Escherichia coli as host

The gram-negative bacterium E. coli is the most commonly
used organism for heterologous protein production. One of
the reasons seems to be that this organism is very well-
known and established in each laboratory. So it is no
surprise that E. coli systems are also most commonly used
for industrial and pharmaceutical protein production. Large-
scale production systems are established. A disadvantage
for therapeutic use of produced recombinant proteins in E.
coli is the accumulation of lipopolysaccharide (LPS),
generally referred as endotoxins, which are pyrogenic in
humans and other mammals. Proteins for this application
must be purified in a second step to become endotoxin-free
(Petsch and Anspach 2000).

In general, overexpressed recombinant proteins accumu-
late either in the cytoplasm or periplasmic space. Most
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frequently, the cytoplasm is the first choice for heterologous
protein production because the higher yield seems to be
more attractive. Also, remarkable yields of secreted proteins
are well-documented (reviewed in Georgiou and Segatori
2005). For routine protein expression, E. coli BL21 and
K12 and their derivatives are most frequently used

(Table 1). In contrast to K12 strains, BL derivates are lon
(Phillips et al. 1984) and ompT protease deficient. Over-
expression of a gene in a foreign host resulted often in lots
of unwanted problems (Table 2a). Most problems are the
result of the difference between the codon usage of the
E. coli and the overexpressed protein, e.g., eukaryotic

Table 1 Some E. coli strains most frequently used for heterologous protein production and their key features

E. coli strain Derivation Key features

AD494 K-12 trxB mutant; facilitates cytoplasmic disulfide bond formation
BL21 B834 Deficient in lon and ompT proteases
BL21 trxB BL21 trxB mutant; facilitates cytoplasmic disulfide bond formation; deficient in lon and ompT proteases
BL21 CodonPlus-RIL BL21 Enhances the expression of eukaryotic proteins that contain codons rarely used in E. coli: AGG, AGA,

AUA, CUA; deficient in lon and ompT proteases.
BL21 CodonPlus-RP BL21 Enhances the expression of eukaryotic proteins that contain codons rarely used in E. coli: AGG, AGA,

CCC; deficient in lon and ompT proteases.
BLR BL21 recA mutant; stabilizes tandem repeats; deficient in lon and ompT proteases
B834 B strain Met auxotroph; 35S-met labeling
C41 BL21 Mutant designed for expression of membrane proteins
C43 BL21 Double mutant designed for expression of membrane proteins
HMS174 K-12 recA mutant; Rif resistance
JM 83 K-12 Usable for secretion of recombinant proteins into the periplasm
Origami K-12 trxB/gor mutant; greatly facilitates cytoplasmic disulfide bond formation
Origami B BL21 trxB/gor mutant; greatly facilitates cytoplasmic disulfide bond formation; deficient in Ion and ompT

proteases
Rosetta BL21 Enhances the expression of eukaryotic proteins that contain codons rarely used in E. coli: AUA, AGG,

AGA, CGG, CUA, CCC, and GGA; deficient in lon and ompT proteases
Rosetta-gami BL21 Enhances the expression of eukaryotic proteins that contain codons rarely used in E. coli: AUA, AGG,

AGA, CGG, CUA, CCC, and GGA; deficient in Ion and ompT proteases; trxB/gor mutant; greatly
facilitates cytoplasmic disulfide bond formation

Most strains are also available as DE3 and DE3 pLysS strains. Strains are commercially available from different manufacturers

Table 2a Some problems of heterologous protein production in E. coli and possible solutions

Symptom Possible problem A collection of solutions

Cell death or no colonies Toxic protein, high basal
expression

More stringent control over basal expression
Tightly controlled promoter system
Weaker promoter
Lowering temperature
Lowering inducer concentration

Insoluble disulfide protein
(inclusion bodies)

Reduction of disulfide bonds Minimize reduction in cytoplasm
Accumulation in the periplasm

Insoluble protein
(inclusion bodies)

Too much expression Attenuate expression by: weaker promoter, lowering temperature, lowering
inducer concentration, decrease plasmid copy number, fusion of a hydrophilic
affinity tag

No activity Misfolded protein, affinity
tag can decrease activity

Minimize reduction in cytoplasm
Accumulation in the periplasm
Attenuate expression
Change affinity tag

No protein, truncated
protein

E. coli codon usage
(codon bias)

Supply rare tRNAs
Stronger promoter
Increase plasmid copy number
Lower temperature
Tightly controlled promoter system

Nevertheless, another bacterial host than E. coli could also solve the problem

212 Appl Microbiol Biotechnol (2006) 72:211–222



proteins. Rare codons could especially be a problem
(Table 2b). It is well-known that amino acids are encoded
by more than one codon, and each organism carries its own
bias in the usage of the 61 available amino acid codons. In
each cell, the tRNA population closely reflects the codon
bias of the mRNA population (Dong et al. 1996). If the
mRNA of heterologous target genes is intended to be
overexpressed in E. coli, differences in the codon usage can
impede translation due to the demand for one or more
tRNAs that may be rare or lacking in the expression host
(Kane 1995; Goldman et al. 1995). Insufficient tRNA pools
can lead to translational stalling, premature translation

termination, translation frameshift, and amino acid mis-
incorporation (Kurland and Gallant 1996).

Theoretically, modification of culture conditions, e.g.,
lowering the temperature (Table 3) or changing media
composition might shift the codon usage bias enough to
alleviate some codon-usage based expression problems.
However, it was reported that the levels of most tRNA
isoacceptors corresponding to rare codons remain un-
changed at different growth rates (Dong et al. 1996).
Translation problems similar to those caused by codon
usage bias can also be created by high-level expression of
proteins having an abundant amino acid. In this case,
expression may be improved by supplying the limiting
amino acid in the culture medium (Kane 1995). Reduction
of the inducer concentration seems to be possible also, but
mostly unsuccessful. To enhance expression of eukaryotic
proteins or proteins that contain codons rarely used in E.
coli, many E. coli strains were engineered to meet this
problem (Table 1). These strains supply additional tRNAs
under control of their native promoters.

Independent on host and promoter system, low, middle,
and high copy plasmids could be used to reduce expression
problems due to an inadequate expression level. For
example, the most frequently used vectors based on the
plasmid ColE1, which aids in the isolation of large amounts

Table 2b Comparison of rare codons in E. coli

Organism AGG arginine AGA arginine CUA leucine AUA isoleucine CCC proline GGA glycine

Bacterial hosts
Escherichia coli B 2.1 2.4 3.4 5.0 2.4 8.2
E. coli K12 1.2 2.1 3.9 4.3 5.5 7.9
Anabaena sp. 2.6 8.3 14.0 8.3 13.0 12.4
Bacillus megaterium 2.7 9.1 10.9 10.3 2.9 26.2
Bacillus subtilis 3.9 10.5 4.8 9.3 3.3 21.8
Caulobactert crescentus CB 15 2.2 0.8 1.4 0.6 18.7 4.3
Methylobacterium extorquens 1.2 0.6 0.8 0.3 18.7 3.7
Staphylococcus carnosus 0.4 7.9 4.6 9.8 0.8 16.7
Streptomyces lividans 4.0 1.1 0.6 0.8 22.7 6.5
Some organisms
Arabidopsis thaliana 10.9 18.9 9.9 12.6 5.3 24.2
Caenorhabditis elegans 4.0 15.4 7.9 9.4 4.4 31.6
Clostridium tetani E88 5.0 25.5 11.2 67.4 1.8 34.6
Drosophila melanogaster 6.3 5.2 8.2 9.5 18.0 17.7
Homo sapiens 11.9 12.0 7.2 7.4 19.9 16.5
H. sapiens Mitochondriom 0.4 0.4 70.4 44.5 33.9 18.9
Plasmodium falciparum 3.3 17.0 5.3 40.8 3.0 20.0
Pichia pastoris 6.6 20.2 10.9 11.7 6.7 19.1
Picrophilus torridus DSM9790 22.9 16.2 7.8 30.3 2.6 18.1
Saccharomyces cerevisiae 9.3 21.3 13.4 17.8 6.8 10.9

The codon usages of bacteria used for heterologous protein expression and some organisms are listed (for Bacilus brevis not available). Codon
frequencies are expressed as codons used per 1,000 codons encountered. The arginine codons AGG and AGA are recognized by the same tRNA
and should therefore be combined. Codon frequency of more than 15 codons/1,000 codons may cause problems for high-level expression in
E. coli. A complete summary of codon usages can be found at http://www.kazusa.or.jp/codon/

Table 3 Incubation temperature and time after induction to change
codon bias in E. coli enhancing protein concentration or increasing
soluble protein

Incubation temperature (°C) Incubation time (h)

8 24–72
15 16–24
20 12–16
25 6–12
30 5–6
37 3–4

Yield of soluble protein could be also increased by lowering the
temperature of the preculture, e.g., 30 or 20 °C
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of recombinant protein, may be replaced by low copy
number (l cn) vectors when high copy number vectors
cannot be used because large amounts of the recombinant
protein are toxic. The vectors pWKS29, pWKS30,
pWKS129, pWKS130 and its derivates carry the pSC101
replicon that produces six to eight plasmid copies per cell
(Wang and Kushner 1991) and could be a useful tool to
express proteins in E. coli like membrane proteins and
kinases. Many different vectors are described but not
further discussed in this review.

Nevertheless, lots of proteins could not be expressed in E.
coli. For this case, bacterial hosts like Bacillus brevis, Bacillus
megaterium, Bacillus subtilis, or Caulobacter crescentus could
be an interesting alternative described in this review.

Another disadvantage of overexpression in the cyto-
plasm is that a lot of proteins form inclusion bodies.
Strategies for resolution could be lowering temperature,
amino acids substitution, coexpression of chaperones,
hydrophilic large fusion partner, adding of sorbitol, glycyl

betain, sucrose, raffinose in the growth medium, changing
culture conditions, e.g., pH, or changing the bacterial strain
(reviewed in Hockney 1994; Makrides 1996). Alternatively,
inclusion bodies can be solubilized and refolded to get
functional and active products (reviewed in Singh and
Panda 2005).

BL21 (DE3) derivatives were especially designed for
the overexpression of membrane proteins (Miroux and
Walker 1996). The mutant C41 (DE3) and double mutant
C43 (DE3) could improve expression level of membrane
proteins, e.g., b subunit of F1Fo ATP synthase (Arechaga
et al. 2000).

Periplasmic expression (e.g., proteins with disulfide
bonds)

Export of proteins from bacterial cytoplasm is widely
employed (Georgiou and Segatori 2005). It could be used

Table 4 Some E. coli promoter systems that are in use for heterologous protein production and their characteristics

Expression system
based on

Induction (range of inductor) Level of expression Key features Original
reference

lac promoter Addition of IPTG 0.2 mM
(0.05–2.0 mM)

Low level up to
middle

Weak, regulated suitable for gene
products at very low intracellular level

Gronenborn
(1976)

Comparatively expensive induction
trc and tac promoter Addition of IPTG 0.2 mM

(0.05–2.0 mM)
Moderately high High-level, but lower than T7 system Brosius et al.

(1985)Regulated expression still possible
Comparatively expensive induction
High basal level

T7 RNA polymerase Addition of IPTG 0.2 mM
(0.05–2.0 mM)

Very high Utilizes T7 RNA polymerase Studier and
Moffatt
(1986)

High-level inducible over expression
T7lac system for tight control of
induction needed for more toxic clones

Relative expensive induction
Basal level depends on used strain (pLys)

Phage promoter pL Shifting the temperature
from 30 to 42 °C (45 °C)

Moderately high Temperature-sensitive host required Elvin et al.
(1990)Less likelihood of “leaky” uninduced

expression
Basal level, high basal level by
temperatures below 30 °C

No inducer
tetA promoter/operator Anhydrotetracycline 200μg/l Variable from

middle to high
level

Tight regulation Skerra (1994)
Independent on metabolic state
Independent on E. coli strain
Relative inexpensive inducer
Low basal level

araBAD promoter
(PBAD)

Addition of L-arabinose
0.2 % (0.001–1.0 %)

Variable from low
to high level

Can fine-tune expression levels in a
dose-dependent manner

Guzman et al.
(1995)

Tight regulation possible
Low basal level
Inexpensive inducer

rhaPBAD promoter L-rhamnose 0.2 % Variable from low
to high level

Tight regulation Haldimann et
al. (1998)Low basal activity

Relative expensive inducer
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for simplifying downstream and N-terminal processing. It
generally facilitates correct folding. Proteins with disulfide
bonds should be especially accumulated in the periplasm
because the cytoplasm is too reducing. This oxidation
process is catalyzed by disulfide binding proteins DsbA,
DsbB, DsbC, DsbD, and peptidyl-prolyl isomerases SurA,
RotA, Fk1B, and FkpA (Joly and Swartz 1994; Shokri et al.
2003). To secrete recombinant proteins into the periplasmic
space, a fusion with a leader peptide at the N terminus is
necessary. Generally, types I and II mechanisms are
commonly used for protein secretion in E. coli K-12 or B
strains. The following signal peptides are in use for
secretion of heterologously expressed proteins: Lpp, LamB,
LTB, MalE, OmpA, OmpC, OmpF, OmpT, PelB, PhoA,
PhoE, SpA, and Tat signal peptides (reviewed in Choi and
Lee 2004; Mergulhao et al. 2005).

In contrast to the signal peptides of the sec-system, the
Tat signal peptides of the twin-arginine translocation
pathway transported folded proteins across the inner
membrane. This could be an advantage because chaperons,
who could be responsible of correct folding, are mainly
located in the cytoplasm (reviewed in Choi and Lee 2004).

Proteins located in the periplasm can be secreted into the
culture medium with an osmotic shock or cell wall
permeabilization. Cell lysis is not necessary, so that
cytoplasmic proteins cannot contaminate the purification
process (Shokri et al. 2003). Most problems for heterolo-
gous protein production in the periplasmic space are
incomplete translocation across the inner membrane
(Baneyx 1999), proteolytic degradation (Huang et al.
2001), and insufficient capacity of the export machinery
(Mergulhao and Monteiro 2004; Rosenberg 1998). When
this capacity is overwhelmed, the excess of expressed
recombinant protein is likely to accumulate in inclusion
bodies. For optimization of the expression level, a careful
balance of the promoter strength and gene copy number is
necessary.

Alternatively, proteins with disulfide bonds can be
overexpressed in the cytoplasm by thioreductase-deficient
(trxB) and glutathione reductase (gor) deficient strains
(Bessette et al. 1999; Ritz et al. 2001; see Table 1).

E. coli promoter systems

Many promoter systems of E. coli are described as tools
for protein expression, but only a few of them are
commonly used (Table 4). A useful promoter must be
strong, has a low basal expression level (i.e., it is tightly
regulated), must be easily transferable to other E. coli
strains, and the induction must be simple and cost-effective,
and should be independent on the commonly used
ingredients of culturing media.

lac, tac, and trc promoter systems

The E. coli lactose utilization is one of the well-known
regulation mechanism. Many promoters were constructed
from lac-derived regulatory element (Polisky et al. 1976).
The lac promoter is rather weak and rarely used for high-
level production of recombinant proteins. But the leakiness
may be an advantage for the production of membrane
proteins or other gene products that are toxic to the cells.
The synthetic tac (De Boer et al. 1983) and trc promoter
(Brosius et al. 1985), which consists of the −35 region of
the trp promoter and the −10 region of the lac promoter,
only differ by 1 bp in the length of spacer domain. The tac
promoter is at least five times more efficient than the
lacUV5 promoter (Amann et al. 1983). tac and trc
promoters are strong and allow the accumulation of up to
15–30 % of total cell protein. Induction of all these
promoters including lac promoter could be achieved by
adding non-hydrolysable lactose analog isopropyl-β-D-1-
thiolgalactopyranoside (IPTG) (Table 4). The strength of
the tac and trc promoter can be a problem to express
successfully recombinant proteins, which are toxic to the
cells. Especially, over expression of membrane proteins
with the strong trc promoter can result into degradation
(Quick and Wright 2002). All three promoter systems are
regulated by catabolite repression and the metabolic state,
which is represented by the cyclic AMP level. To reduce
these problems, the T7 RNA polymerase system was
developed.

T7 RNA polymerase system

One of the most widely used expression systems is the T7
RNA polymerase system (Studier and Moffatt 1986). The
T7 RNA polymerase elongates chains about five times
faster than E. coli RNA polymerase. The two polymerases
recognize completely different promoters and can com-
pletely be used selectively. Thousands of homologous and
heterologous proteins were successfully expressed to high
levels in E. coli BL21 (DE3). The gene of the T7
polymerase is in strain BL21 (DE3) chromosomal located
and under the control of a lac promoter derivate L8-UV5
lac (Grossman et al. 1998; Pan and Malcolm 2000). The
L8-UV5 lac promoter contains point mutations that
distinguish it from the wild-type lac promoter. Two point
mutations are in the −10 region, which increase promoter
strength and decrease its dependence on cyclic AMP, and
its receptor protein called CAP. A third point mutation
creates a stronger promoter that is less sensitive to glucose
(Grossman et al. 1998). This allows strong induction of T7
RNA polymerase with IPTG (Table 4) even in the presence
of glucose. Nevertheless, there is basal expression of T7
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RNA polymerase for induction (Dubendorff and Studier
1991; Pan and Malcolm 2000), which can lead to problems
if the produced proteins are toxic for the host cells (Studier
1991). One way to reduce basal level is to work with host
strains containing pLysS or pLysE vectors. These vectors
express the T7 lysozyme, a natural inhibitor of T7 RNA
polymerase (Moffatt and Studier 1987). The basal level of
BL21 compared to BL21 (pLysS) is nearly ten times lower
but a residual background is still present which can also
result in the described problems. A further problem is that
T7 lysozyme is a bifunctional protein. It cuts a specific
bond in the petidoglycan layer of the E. coli cell wall. This
seems to be the reason why growth rates with strains
containing pLysS or pLysE decreased. Another aspect is
that T7 lysozyme can reduce expression following induc-
tion, resulting in markedly lower yields (Studier 1991). The
reduction of basal T7 RNA polymerase level can also be
achieved by adding 0.5–1.0 % glucose into the medium
(Grossman et al. 1998). This effect of catabolite repression
is much stronger for BL21 (DE3) than for BL21 (DE3)
pLys (Pan and Malcolm 2000).

Phage promoter pL

Another approach that is widely used for protein over-
expression is to place a gene under the control of a
regulated phage promoter pL, which has moderately high
expression level. The genes must be cloned downstream of
a tightly regulated phage promoter pL that is regulated by
the cI repressor. The temperature-sensitive cI857 repressor
allows control of gene expression by changing the growth
temperature instead of induction by a chemical inducer. At
30 °C, the cI857 repressor is functional and it turns off
expression, but at 42 °C, the repressor is inactivated so that
gene expression is induced (Elvin et al. 1990; Love et al.
1996). Functional protein could be also purified by a shift up
to 45 °C (Armarego et al. 1989). It is interesting to note that
the phage promoter pL is constitutive at low temperatures
because cI857 repressor becomes fully active at 29 °C and
higher (Lowman and Bina 1990). This constitutive system
can be used for the production of proteolytically susceptible
proteins at low temperatures (Menart et al. 2003).

tetA promoter/operator system

The tetA promoter/operator is useful for the tight regulation,
high-level synthesis of foreign gene product in E. coli
(Skerra 1994). It is regulated by the tetR repressor, which is
not coded by an E. coli gene. The system is independent on
the used E. coli strain, e.g., B or K12 derivates. Cells are
induced by low concentration of anhydrotetracycline

(Table 4). Anhydrotetracycline binds the promoter nearly
35-fold higher than tetracycline and its antibiotic activity is
100-fold lower (Degenkolb et al. 1991). Concentrations
starting from 50 ng/ml cause full induction and have no
effect on the growth of E. coli (Lutz and Bujard 1997). Lots
of proteins were successfully expressed with this system,
e.g., Fab fragments or toxins (Skerra 1994). The maximum
of induction is ca. 100-fold over uninduced level (Korpela
et al. 1998). In contrast to other systems, the basal level is
very low and independent on the E. coli strain and the
metabolic state.

L-arabinose inducible PBAD promoter

The promoter araBAD (PBAD) of the arabinose operon is a
useful alternative for heterologous protein production in
E. coli. When a gene is cloned downstream of the PBAD
promoter, its expression is controlled by the AraC activator.
Expression is induced to high levels on media containing
arabinose. Moreover, expression is tightly shut off on media
containing glucose but lacking arabinose. In general, genes
cloned under the control of the araC-PBAD promoter system
are efficiently repressed. However, the levels of expression
of PBAD controlled genes may not be zero in the repressed
state (Guzman et al. 1995). However, araC-PBAD promoter
system allows high-level expression, tightly regulated
protein expression, and very inexpensive induction with
L-arabinose. In bacterial strains, which are deleted for ara
genes, expression of the cloned gene reaches maximal
induction upon adding 0.001 % L-arabinose. In strains
that can ferment, 1 % is necessary for full induction
(Mayer 1995). L-arabinose acts as inducer with the activator
AraC in the positive control of the arabinose regulon
(Haldimann et al. 1998). It was proven to function under
high cell density fermentation, but the protein quality was
shown to be lower than in low densities (DeLisa et al.
1999).

L-rhamnose inducible rhaPBAD promoter

The rhamnose-inducible rhaPBAD promoter is also an
interesting tool for tightly regulated heterologous protein
production in E. coli. The regulon of the operon is
described in detail (Egan and Schleif 1993). In principle,
L-rhamnose acts as an inducer with the activator RhaR for
synthesis of RhaS, which in turn acts as an activator in the
positive control of the rhamnose regulon (Haldimann et al.
1998). The L-rhamnose regulons are also regulated by
catabolite repression. High cell density fermentation for
production L-N-carbamoylase using the rhaBAD promoter
is reported (Wilms et al. 2001).
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Other bacterial hosts than E. coli

Other bacterial hosts become more and more attractive for
heterologous protein production. One reason is that in-
creasing genomics knowledge enables to compare the
codon usage of host and original organism. A host with a
similar codon usage is optimal. E. coli may especially cause
problems for high-level expression. Strains like BL21
CodonPlus-RIL, BL21 CodonPlus-RP, Rosetta, and others
(see Table 1) are attempts to reduce these problems, but
nevertheless with limited success. The codons AGG, AGA,
CUA, AUA, CCC, CGA are very rarely used in E. coli
(Table 2b). Codon frequency of more than 15 codons/1000
codons may cause problems for high-level expression in E.
coli (Table 2b). Other bacterial hosts, like Bacilli and others
(Table 2b), have another usage and can reduce this problem
for high level expression. In comparison to E. coli, other
bacterial hosts have more advantages in the field of protein
production described in this review.

Bacilli as hosts

After E. coli, gram-positive Bacilli strains seem to be the
most popular organism for heterologous protein production.
Many pharmaceutically relevant proteins were successfully
expressed in different strains (Table 5). In contrast to the

well known E. coli, Bacilli strains have the general
advantage that the outer membrane has no lipopolysaccha-
rides. These LPS are well-known as endotoxins, which are
pyrogenic in humans or other mammals. Furthermore the
Bacilli strains are attractive hosts because they have a
naturally high secretion capacity, and they export proteins
directly into the extracellular medium. In contrast to E. coli,
little is known about disulfide bond formation and
isomerization (Westers et al. 2004).

B. megaterium

Heterologous gene expression in B. megaterium seems to
be an interesting alternative system in contrast to E. coli. It
has a number of favorable features as an expression host,
including low protease activity, structural and segregational
stability of plasmids, and the ability to grow on a wide
variety of substrates. Highly efficient expression of homol-
ogous and heterologous genes was reported in the 1980s
(Meinhardt et al. 1989) and was becoming popular in the
1990s (Rygus and Hillen 1991). Plasmids with the
promoter of the xylose-operon are most frequently used
for inducing high-level expression of heterologous genes
(Rygus et al. 1991). Genes were 130- to 350-fold induced
by using 0.5 % xylose. Induction was strongly inhibited by
adding glucose because it bounds to XylR and thereby

Table 5 Some pharmaceutically and industrially relevant proteins that were successfully expressed in different Bacilli strains

Recombinant protein Bacillus strain Yield (mg/l) Reference

α-amylase (Bacillus amyloliquefaciens) B. subtilis 1,000–3,000 Palva (1982)
α-amylase (Bacillus stearothermophilus) B. brevis 3,000 Udaka and Yamagata (1993)
α-amylase (human) B. brevis 60 Konishi et al. (1990)
Cellulase B. brevis 100 Kashima and Udaka (2004)
Cholera toxin B B. brevis 1400 Ichikawa et al. (1993)
Dextransucrase (Leuconostoc mesenteroides) B. megaterium n.d. (362 U/g) Malten et al. (2005)
Gelatin B. brevis 500 Kajino et al. (2000)
Epidermal growth factor (human) B. brevis 240 Yamagata et al. (1989)
Epidermal growth factor (human) B. subtilis 7 Lam et al. (1998)
Epidermal growth factor (mouse) B. brevis 50 Wang et al. (1993)
Mouse/human chimeric Fab′ B. brevis 100 Inoue et al. (1997)
Interferon-α2 (human) B. subtilis 0.5–1.0 Palva et al. (1983)
Interleukin-2 (human) B. brevis 120 Takimura et al. (1997)
Interleukin-6 (human) B. brevis 200 Shiga et al. (2000)
Lipase A B. subtilis 600 Lesuisse et al. (1993)
Penicillin G acylase B. subtilis n.d. Yang et al. (2001)
Pepsinogen (swine) B. brevis 11 Udaka and Yamagata (1993)
PHA depolymerase A (Paucimonas lemoignei) B. subtilis 1.9 Braaz et al. (2002)
Proinsulin B. subtilis 1000 Olmos-Soto and Contreras-Flores (2003)
Protein disulfide isomerase B. brevis 1100 Kajino et al. (1999)
ScFv B. subtilis 10–15 Wu et al. (2002)
Staphylokinase B. subtilis 337 Ye et al. (1999)
Streptavidin B. subtilis 35–50 Wu and Wong (2002)
Thioredoxin (Aliciclobacillus acidocaldarius) B. subtilis 500 Anna et al. (2003)
Toxin A (Clostridium difficile) B. megaterium n.d. Burger et al. (2003)
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acted as an anti-inducer (Kim et al. 1996). In contrast to E.
coli, the transformation seems to be more difficult.
Polyethylene glycol-mediated protoplasting is necessary
for efficient transformation (Meinhardt et al. 1989;
Vorobjeva et al. 1980). Toxins and other difficult to produce
proteins were successfully made with B. megaterium as
host. In some cases, recombinant protein made up 30 % of
total soluble protein (England et al. 1997). Its protein
secretion capacity makes it a suitable host for the
production of exoenzymes such as various amylases,
penicillin amidase, steroid hydrolases, or dextransucrase
(Vary 1994; Malten et al. 2005). Signal peptides guide these
exoenzymes to the secretion machinery of the Sec pathway
in the cell membrane. Before translocation through the cell
membrane, these proteins remain unfolded in the cell and
fold outside the cytoplasm after proteolytic removal of the
signal peptide (Tjalsma et al. 2000).

B. subtilis

B. subtilis is a well-studied prokaryote and much more used
for heterologous protein production (reviewed in Li et al.
2004) than B. megaterium. Over the years, a number of
expression systems for heterologous protein production
were constructed (Henner 1990; Le Grice 1990). Its ability
to secrete proteins directly into the medium is one of the
greatest advantages. In the past, the major limitation of its
application was the secretion of high levels of proteases
into the culture medium, which have the potential to
degrade other secreted proteins (Ulmanen et al. 1985;
Nakamura et al. 1985). A double protease-deficient strain
improves the stability of secreted proteins (Kawamura and
Doi 1984, Stahl and Ferrari 1984). The use of a strong
vegetative promoter and the manipulation of the medium
compositions could improve the situation (Wong et al.
1986), but the development of an induction system based
on the regulatory region and the SP of sacB makes it much
more attractive (Wong et al. 1986). Highest expression level
was achieved by using the sacUh mutant strain WB30. This
improved expression–secretion system was described in 1991
(Wu et al. 1991). The strain WB600 was deficient of six
extracellular proteases and showed 0.32 % of the wild-type
intracellular protease activity. To increase the production
level, an expression cassette carrying sacY, a sacB-specific
regulatory gene, was constructed. This gene was placed under
the control of a strong, constitutively expressed promot-
er, P43. The sacB transcript stability correlated with the
amount of produced recombinant protein (Daguer et al.
2005). Furthermore, development resulted in the strain
WB800, which was eight proteases deficient (Murashima et
al. 2002). All known extracellular proteases are deficient in
the strain WB800 (Margot and Karamata 1996). This
system could be optimized for culture and fermentation

condition reached up to a level of 3,000 mg recombinant
protein per liter (Table 5). Many different proteins are
produced with this system, e.g., functional monomeric
streptavidin (Wu and Wong 2005). The coexpression of
EngB endoglucanase and mini-CbpA1 resulting in the in
vivo synthesis of minicellulosomes (Cho et al. 2004) seems
to be a remarkable application. Nevertheless, many pro-
moter systems for B. subtilis are described in detail and are
used, e.g., the vegetative vegI promoter (Lam et al. 1998),
the xylose-inducible promoter (Kim et al. 1996), or the
tetracycline inducible promoter (Geissendörfer and Hillen
1990). In contrast to E. coli, the transformation seems to be
more difficult. Polyethylene glycol-mediated protoplasting is
necessary for efficient transformation (Puyet et al. 1987).
Nevertheless, B. subtilis seems to be an interesting species
for industrial and pharmaceutical protein production (Westers
et al. 2004).

B. brevis

B. brevis is not so well-studied as B. subtilis, but it is also
an interesting host for heterologous protein production.
Heterolog expressed proteins are secreted directly into the
culture medium where they are accumulated at high levels
in a relatively pure state. The secreted proteins are usually
correctly folded, soluble, and biologically active. B. brevis
has a very low level of extracellular protease activity, so
that secreted proteins are usually stable and not significant-
ly degraded. Protein expression could be enhanced by
modification of the signal sequence (Sagiya et al. 1994) and
isolation of a protease-deficient mutant (Kajino et al. 1997).
Efficient secretion of heterologous proteins can be en-
hanced by fusion with a protein disulfide isomerase at the N
terminus (Kajino et al. 1999). In contrast to E. coli, the
transformation efficiency is not so high. B. brevis 47-5Q
shows higher transformability than other B. brevis strains
using the Tris–polyethylene glycol method or electropora-
tion (Udaka and Yamagata 1993). High copy number
plasmids (McKenzie et al. 1986) and low copy number
plasmids (Horinouchi and Weisblum 1982) are in use for
efficient protein production. The produced yield of secreted
recombinant proteins is most frequently between 10 mg and
3 g per liter (Table 5).

Caulobacter crescentus

The gram-negative bacterium Caulobacter crescentus is
generally found in freshwater environment. It is mainly in
mind because of its distinctive life cycle. However, it
secretes large amounts of the hydrophilic protein RsaA
using the efficient type I secretion mechanism (Awram and
Smit 1998). If the RsaA secretion signal is C-terminally
fused to the protein of interest, it will be secreted into the

218 Appl Microbiol Biotechnol (2006) 72:211–222



medium (Bingle et al. 2000). The C-terminal secretion
signal appears to mediate the export of a wide variety of
nonnative proteins through a large hydrophilic channel that
traverses the membrane. A lac promoter system was used
for the first attempts of heterologous protein production.
Small and high copy vectors were designed later (Umelo-
Njaka et al. 2001a). The hybrid proteins formed macro-
scopic aggregates in the culture fluids, which could be
recovered through a nylon mesh in a highly purified form
by coarse filtration of the culture. The system has the
limitation that it is most efficient for small- and medium-
size proteins up to 450 amino acids. It is now not so
frequently used, but it seems to be an interesting tool for
low-cost protein production. Overexpression of vaccine
candidate proteins is reported (Umelo-Njaka et al. 2001b).

Other systems

In principle, all bacteria can be used for heterologous
protein production. But the unknown information about
their regulation and mechanism, as well as the fact that
there are no commercial vector and promoter systems are
the reasons that these systems are not so frequently used.

One of them is the gram-positive soil bacteria Strepto-
myces (Brawner 1994). Soluble forms of the human T-cell
receptor CD was produced with Streptomyces.

Methylotrophic bacteria are attractive hosts for recom-
binant protein production because of the low cost of single
substrates that sustain them. Expression level depends on
the strain and could reach 10 % of total cell protein
(FitzGerald and Lidstrom 2003). Enterocin P, a strong anti-
listerial pediocin-like bacteriocin from Enterococcus
faecium P13, was produced by Methylobacterium extor-
quens (Gutierrez et al. 2005).

The cyanobacterium Anabaena sp. could be an alterna-
tive to E. coli for the production recombinant proteins highly
enriched with stable isotopes used for structural studies by
nuclear magnetic resonance spectroscopy (Desplancq et al.
2005). Proteins were overexpressed using the endogenous
promoter of the nitrate assimilation. Standard proteins were
overexpressed upon induction with NaNO3, yielding up to
250 mg/l of culture. When the cyanobacteria were grown in
the presence of inexpensive 15N-, 13C-labeled mineral salts,
and 2H2O, the expressed polypeptides were highly enriched
in stable isotopes. Furthermore, the tight repression of the
nir promoter upon induction allowed the production of the
toxic oncoprotein E6.

The nonpathogenic gram-positive bacterium Staphylo-
coccus carnosus is able to secrete large amounts of proteins
to the culture supernatant. The proteins can thus be isolated
in soluble and relatively pure state. Laborious solubiliza-
tion, renaturation, and purification procedures, which often
strongly reduce the product recovery in E. coli, are

dispensable in S. carnosus. The almost complete absence
of proteolytic activities and the high genetic stability are
furthermore advantages of the S. carnosus system (Hansson
et al. 2002).

In recent years, Pseudomonas fluorescens (Schneider et
al. 2005; Landry et al. 2003) and Ralstonia eutropha
(Barnard et al. 2004) were used to produce remarkably high
yields of recombinant proteins.

Nevertheless, these system are rarely in use, but might
become relative more important in the near future.

Conclusion

During the last decades many bacterial hosts where
optimized for heterologous protein production. Principally,
all bacteria could be used for heterologous protein
production. The genomics era offers new information about
the bacteria hosts that are frequently and rarely used. Rarely
used codons or endotoxins could be a reason to change
from an E. coli system to another host. Another attractive
reason for pharmaceutical industry to work with another
host or new promoter system could be the patent situation.
However, E. coli is still the most commonly used host for
industrial production of pharmaceutical proteins, but it
seems to be only a matter of time when FDA-approved
pharmaceutical proteins are produced by other bacterial
hosts.
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