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Abstract Yeasts combine the ease of genetic manipulation
and fermentation of a microorganism with the capability to
secrete and modify foreign proteins according to a general
eukaryotic scheme. Their rapid growth, microbiological
safety, and high-density fermentation in simplified medium
have a high impact particularly in the large-scale industrial
production of foreign proteins, where secretory expression
is important for simplifying the downstream protein
purification process. However, secretory expression of
heterologous proteins in yeast is often subject to several
bottlenecks that limit yield. Thus, many studies on yeast
secretion systems have focused on the engineering of the
fermentation process, vector systems, and host strains.
Recently, strain engineering by genetic modification has
been the most useful and effective method for overcoming
the drawbacks in yeast secretion pathways. Such an
approach is now being promoted strongly by current post-
genomic technology and system biology tools. However,
engineering of the yeast secretion system is complicated by
the involvement of many cross-reacting factors. Tight
interdependence of each of these factors makes genetic
modification difficult. This indicates the necessity of
developing a novel systematic modification strategy for

genetic engineering of the yeast secretion system. This
mini-review focuses on recent strategies and their advan-
tages for systematic engineering of yeast strains for
effective protein secretion.
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Introduction

Microorganisms are used widely as producers of heterolo-
gous proteins of medical or industrial interest. Bacteria are
the most efficient producers, but they are not able to
perform some post-translational processing (folding, glyco-
sylation, phosphorylation, or removal of part of their initial
sequence) of eukaryotic proteins. Eukaryotic yeasts are able
to do the post-translational processing and secrete heterol-
ogous eukaryotic proteins in their native, biologically
functional form. The rapid growth and high-density
fermentation of yeast in chemically defined media have a
high impact particularly in the large-scale industrial
production of foreign proteins, where secretory expression
is important for simplifying the downstream protein
purification process (Porro et al. 2005). Therefore, the
intrinsic commercial value of heterologous proteins has
driven a wide range of studies of the optimization of yeast
secretion systems as “cell factories.” As a result, currently,
many types of FDA-approved therapeutic proteins are
being produced using yeasts (Rader 2007; Schmidt 2004).

However, secretory expression of heterologous proteins
in yeast is often limited at comparatively low levels. Factors
affecting titer of heterologous protein secretion include the
properties of the target protein, the host strain and its
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cultivation condition, vector system, promoter choice,
codon usage, leader sequences, translation signals, process-
ing and folding, and secretion (Niebaur and Robinson
2005). Thus, many studies on the yeast secretion systems
have focused on engineering of the fermentation process,
expression vector systems, and host strains in order to
improve two different volumetric yields, cell titer and cell
specific productivity, respectively (Palomares et al. 2004).
If any one of above factors is suboptimal in protein
secretion, it can create a bottleneck that leads to poor
production yields (Mattanovich et al. 2004). Therefore,
often it has been found that secretion titers of yeast are 100-
to 1,000-fold lower than the theoretically estimated range
(Schröder 2007). Improvements in the secretion titer of
some heterologous proteins from milligrams to grams per
liter have been achieved over the past decade. This is due
mainly to optimization of the fermentation process, which
includes increased cell density or reduced protein degrada-
tion by control of pH and temperature and optimization of
the expression vector system. However, the wide range of
cell specific secretion titers for different proteins in yeast
still raises the important question as to whether host- or
protein-based factors limit the cell specific protein secretion
levels. Molecular engineering of the secretory target
proteins to optimize their properties for effective secretion
is difficult and crucial in most cases; thus, current studies
on the improvement of cell specific secretion titers have
shifted to focus on host selection and engineering.

Selection of the most suitable host based on host-protein
compatibility is an initial important step, which helps to
overcome drawbacks that may occur as a result of host-
type-specific limitation in single-cell specific secretory
productivity (Greene 2004). For such a purpose, distinct
yeast secretion systems have been established (Böer et al.
2007; Gellissen et al. 2005a; Müller et al. 1998). The initial
yeast system that was used for heterologous protein
secretion was based on the baker’s yeast Saccharomyces
cerevisiae, which led to successful production of FDA-
approved pharmaceuticals such as insulin (Melmer 2005)
and hepatitis B surface antigen (Harford et al. 1987). More
recently, defined systems have included fission yeast
Schizosaccharomyces pombe (Giga-Hama 1997; Giga-
Hama and Kumagai 1999; Giga-Hama et al. 1994,
2007; Takegawa et al. 2009), methylotrophic species
Candida boidinii (Sakai et al. 1996), Pichia methanolica
(Raymond et al. 1998), Pichia pastoris (Ilgen et al. 2005),
and Hansenula polymorpha (Gellissen 2000; Kang and
Gellissen 2005), Klyveromyces lactis (Gellissen and
Hollenberg 1997), and the dimorphic species Arxula
adeninivorans (Böer et al. 2005) and Yarrowia lipolytica
(Madzack et al. 2005). These different yeast systems could
be useful for confirming host-protein compatibility by
simple screening, which then may result in savings in time

and resource use. Recently, a wide-range vector system
named CoMed™ has been established, which may be able
to assess several yeast platforms in parallel to select the best
host system (Gellissen et al. 2005b; Steinborn et al. 2006).

Protein-based host selection and promoter/signal-
peptide optimization are the simplest initial approaches,
and often yield 3–10-fold cell specific secretion improve-
ments over wild-type strains, and are almost always
protein specific. However, many proteins are still
secreted only at comparatively low levels even though
the transcription or translation level of the target protein
is optimized sufficiently for overexpression in the most
suitable host system (Macauley-Patrick et al. 2005; Porro
et al. 2005; Punt et al. 2002; Schröder 2007). This implies
that heterologous protein secretion is not only a simple
homogeneous protein synthesis process but also involves
many other co-factors such as co- or post-translational
translocation of nascent proteins into the endoplasmic
reticulum (ER), protein folding and quality control inside
the ER, post-translational glycosylation in the ER and
Golgi apparatus, intracellular protein trafficking and
sorting, proteolytic degradation, and stress response for
misfolding or overexpression. Therefore, strain engineer-
ing by genetic modification has become the most useful
and effective method to overcome such drawbacks in the
cell specific productivities. Such an approach is now being
promoted strongly by current post-genomic technology
and system biology tools, which has made it possible to
modify hosts almost on theoretical grounds.

The current strategy for strain engineering for protein
secretion is focused mainly on four topics: (1) engineering
of protein folding and quality control system in the ER, (2)
engineering of the intracellular protein trafficking pathway,
(3) minimization of post-secretory proteolytic degradation,
and (4) engineering of post-translational glycosylation
(which is particularly required for producing pharmaceuti-
cal glycoproteins). This mini-review will deal with such
cell engineering strategies trying to improve cell specific
productivities and not primarily vector/fermentation opti-
mization, which are well-established (recently reviewed by
Böer et al. 2007).

Engineering of protein folding and quality control in ER

Secretory proteins start their journey on the intracellular
secretory pathway by co- or post-translational translocation
through the Sec61 translocon into the crowded environment
of the ER lumen, where they are folded into their native
structure via the ER-resident protein-folding machinery,
which is under strict quality control (QC) (Anelli and Sitia
2008; Dobson 2004; Ellgaard and Helenius 2003). After
translocation into the ER, nascent polypeptides are bound
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by the ER-resident chaperone protein binding protein (BiP;
encoded by Kar2) for folding to native structures, whereas
the nascent glycoproteins are bound by the ER chaperone
calnexin (encoded by CNE1) to undergo their correct
folding and N-glycan processing. The ER sustains a set of
covalent modifications, which include signal sequence
processing, disulfide bond formation, N-glycosylation,
glycosyl-phosphatidyl-inositol addition, degradation, and
sorting.

Following the substantial folding and modification
process in the ER, only properly folded and assembled
proteins can be exported from the ER to the Golgi
apparatus, where they are further modified, before being
transported to the extracellular space, vacuoles or other
organelles (Klausner 1989). Meanwhile, misfolded or
aggregated proteins in the ER are recognized by the QC
system, which leads to binding of the proteins by the BiP
complex and eventual redirection to the cytosol for
degradation, namely ER-associated protein degradation
(ERAD) (Yoshida 2007). Prolonged binding of BiP to
partially misfolded proteins leads to the induction of
unfolded protein response (UPR), which stimulates proteol-
ysis by ERAD and inhibits the transcription and transloca-
tion of the target protein. Thus, ER-resident protein folding
and the QC system mainly involves five components: (1)
molecular chaperones (e.g., BiP, calnexin, and calreticulin)
that assist protein folding, (2) enzymes such as protein
disulfide isomerases (PDIs) and cis–trans peptidyl prolyl
isomerases (PPIs), (3) degradation machinery linked with
ERAD, (4) signal transduction pathways linked with UPR,
and (5) post-translational modification enzymes related to
glycosylation. As a result of such strict QC systems in the
ER, protein folding often has a tendency to become the most
rate-limiting bottleneck in heterologous protein secretion.
Thus, genetic modification of the ER protein folding and QC
system has become the most useful approach in the current
strain engineering method.

The complexity and stringency of the protein folding and
QC system in the ER are supported by numerous genes;
therefore, their modification is not simple (Gasser et al.
2009; Travers et al. 2000). As a straightforward strategy,
overexpression of multiple chaperones, PDIs, and other
folding helpers seems to be an effective approach. Some
studies have emphasized that overexpression of the chap-
erone BiP, a member of the Hsp70 family of ATPases,
stimulates protein secretion in S. cerevisiae, for example, a
5-fold increase in secretion of human erythropoietin
(Robinson et al. 1994) and a 26-fold increase in bovine
prochymosin (Harmsen et al. 1996). Moreover, in some
cases, reduction of BiP levels leads to decreased secretion
of foreign proteins (Robinson et al. 1996). However, it has
been found that the overexpression effect of BiP is protein
or host specific and thus not beneficial in all cases, although

promising expectations have emerged that increased BiP
levels could result in increased folding capacity in the ER
and improved secretion rates. Some studies even have
suggested a negative impact of BiP overexpression, as
extracellular levels of Aspergillus niger glucose oxidase
decreased 10-fold upon BiP overexpression in H. poly-
morpha (van der Heide et al. 2002). Overexpression of BiP
seems to stall the activity of other chaperone mechanisms,
because of the hierarchy of the ER chaperone system, and
attenuates UPR. BiP overexpression increases the potency
of prolonged binding between BiP and its target proteins,
which leads to ERAD rather than protein secretion. This
may explain why the overexpression of BiP chaperone
alone does not result in increased secretion, but can
negatively influence it (Kauffman et al. 2002; van der
Heide et al. 2002).

BiP plays a role in all known functions of the ER,
including gating the translocon, folding nascent proteins,
targeting misfolded proteins for degradation, regulating the
unfolded protein response, and contributing to ER calcium
stores. All except the last of these activities require BiP’s
ATPase activity, which is regulated by DnaJ co-chaperones
and other cofactors like Sls1p/Sil1p (Kabani et al. 2000;
Tyson and Stirling 2000) and Lhs1p (Steel et al. 2004). By
single or multiple overexpression of the co-chaperones
Jem1p (a DnaJ-homolog), Sil1p, Lhs1p, and Scj1p,
secretion levels of recombinant human albumin (rHA),
granulocyte–macrophage colony-stimulating factor (GM-
CSF), and recombinant human transferrin (rTf) were
significantly enhanced in S. cerevisiae (Payne et al. 2008).
A synergistic increase in secretion of single-chain antibody
fragments from S. cerevisiae has been observed with joint
overexpression of BiP and PDI (Shusta et al. 1998).
Pyrococcus furiosus β-glucosidase secretion in S. cerevi-
siae is diminished with increased BiP levels, but benefits
from higher PDI levels, although the target protein does not
contain any disulfide bonds (Smith et al. 2004). This
indicates the chaperone effect of PDI and complex
regulation effects between different chaperones.

Next to BiP/DnaJ and their cofactors, overexpression of
PDI alone increases secretion of some, but not all,
heterologous proteins (Butz et al. 2003; Damasceno et al.
2006; Inan et al. 2006; Robinson et al. 1994). Duplication
of PDI1 with its partner Ero1p accelerates the secretion of
recombinant human albumin in K. lactis (Gross et al. 2004;
Lodi et al. 2005). Duplication of PDI and polyubiquitin
genes has a strong stimulating effect on the production of
the highly disulfide-bonded HSA, but not of interleukin 1β
in K. lactis (Bao and Fukuhara 2001). By overexpressing
polyubiquitin gene UBI4 in S. cerevisiae, human leukocyte
elastase inhibitor secretion was enhanced 7-fold, but no
effect was found for production of α-factor and of certain
natural yeast extracellular enzymes (Chen et al. 1994). This
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result indicates that the modification of the ubiquitin–
proteasome pathway in protein secretion is protein specific.

Another approach to stimulate the secretory pathway
concertedly is manipulation of the UPR pathway regulator
Hac1p. Accumulation of unfolded or misfolded proteins in
the ER induces UPR by Hac1p, which then activates
expression of chaperones (e.g., PDI, PPI, and ERAD genes)
as well as suppresses transcription of the secretory target
protein (Schröder and Kaufman 2005). Interestingly, heter-
ologous overexpression of Trichoderma reesei Hac1 in
S. cerevisiae yielded a 2.4-fold improvement in Bacillus
α-amylase secretion. Overexpression of S. cerevisiae HAC1
has been shown to enhance secretion of the endogenous
invertase (2-fold), and recombinant α-amylase (70%
increase), but it did not affect secretion of an ER-
accumulated T. reesei endoglucanase EGI (Valkonen et al.
2003). Overexpression of the spliced form of HAC1
(namely, HAC1i) in S. cerevisiae stimulates secretion (1.5-
fold) of three types of recombinant proteins, probably due
to induction of co-chaperones Sil1p, Lhs1p, and Jem1p
(Payne et al. 2008). Unexpectedly, overexpression of co-
chaperone genes LHS1, JEM1, and four co-chaperone
genes (SIL1, LHS1, JEM1, and SCJ1) together reduced
HAC1i transcript levels up to approximately 2-fold.
Disruption of HAC1 in S. cerevisiae led to reduced secretion
of the two recombinant proteins (α-amylase, 75%; EGI,
50%), but not of the endogenous invertase (Valkonen et al.
2003). These results indicate that the effect of HAC1
overexpression is protein or host specific and complex
regulation effects between Hac1p and other chaperones.

Due to complex regulation between different chaperones
or folding helpers and their connection with the ERAD and
UPR pathways, modification of one step can lead to rate
limitation of the following one, which can then become the
bottleneck of the secretory expression system. Moreover,
modification effects are often protein or host specific.
Therefore, co-expression of multiple chaperones and
folding helpers, or targeting cytosolic or heterologous
chaperone to the ER lumen may yield more consistent
improvements for different heterologous proteins as recom-
mend by Schröder (2008). Single gene introduction of S.
cerevisiae chaperones Kar2p, Ssa1p, or PDI to P. pastoris
improved recombinant protein secretion four to seven
times, while multiple introduction of YDJ1p/PDI, YDJ1p/
Sec63, and Kar2p/PDI synergistically increases secretion
levels 8.7, 7.6, and 6.5 times, respectively (Zhang et al.
2006). Ideally, the combination and co-expression levels of
each chaperones and folding helpers should be tuned to
provide a more comprehensive assessment. Such an
approach has been used successfully in filamentous fungi
to identify optimal levels of BiP and Pdi1p for the
production of the plant sweet protein thaumatin (Lombraña
et al. 2004; Moralejo et al. 2001).

Engineering of intracellular protein trafficking pathway

Intracellular trafficking of secretory proteins in the secre-
tion pathway is initiated with their co- or post-translational
translocation into the ER lumen and completed by stepwise
vesicular transport, which involves ER-to-Golgi, intra-
Golgi, and post-Golgi traffic, respectively (Fig. 1). After
correct folding in the ER lumen, the selective trafficking of
secretory proteins between organelles in the secretory
pathways is accomplished predominantly by membrane-
enclosed transport vesicles. Thus, intracellular protein
trafficking is also named vesicular or membrane trafficking.
In such trafficking systems, newly synthesized proteins are
selected and concentrated into distinct vesicle populations,
which are subsequently targeted to a specific acceptor
compartment. The process of directing each newly
expressed protein to the cell surface—referred to as protein
targeting, or protein sorting—is crucial to the organization
and functioning of yeast cells. The effects of each traffic
step and correct vesicular destination at each traffic cross-
roads are controlled by numerous intracellular membrane
proteins and significantly affect the overall secretory
effects. Thus, genetic optimization of traffic pathway is
required particularly in the case of inefficient traffic or mis-
sorting, which often results in intracellular retention or
accumulation of the target proteins for secretion.

As an initial approach to engineering, the early secretory
traffic pathway from cytosol to ER must be considered. In
yeast, two pathways for cytosol-to-ER targeting exist: co-
and post-translational pathways. Polypeptide domains of
secretory proteins, termed signal peptides, are necessary,
and in most cases sufficient, for such protein targeting.
These signal peptides are segments of 15–50 aa comprising
a central hydrophobic core, which is flanked by an N-

Fig. 1 A schematic diagram representing typical bottlenecks in the
secretory pathway of heterologous proteins in yeast. The main
membrane trafficking and vacuolar protein sorting pathways are
indicated
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terminal, positively charged and a C-terminal, hydrophilic
region in the secretory proteins (Martoglio and Dobberstein
1998). In co-translational translocation pathway, the
ribosome–nascent chain complex is transferred to the
translocon channel in the ER membrane by signal recog-
nition particle (SRP) and its receptor (SR) as soon as the
N-terminal signal sequence emerges (Halic and Beckman
2005; Kida et al. 2007; Shan and Walter 2005). However,
the post-translational translocation pathway seems to be
used by a larger fraction of yeast secretory proteins, which
possess only moderately hydrophobic signal sequences that
cause them to escape recognition by the SRP during their
synthesis in cytosol (Rapoport 2007). These post-
translational secretory proteins need to remain unfolded or
loosely folded in cytosol after their release from the
ribosome by binding with cytosolic chaperones and their
cofactors until post-translational translocation across the
translocon channel. This may imply overexpression effect
of some cytosolic chaperones and ribosome-binding factors
in secretion improvement (Gasser et al. 2007).

In the both co- and post-translational translocation routes
in the early secretory pathway, protein targeting specificity
is mainly conferred by the hydrophobic core of the
secretory signal sequences and its interaction compatibility
with SRP in cytosol (Kida et al. 2009; Ng et al. 1996; Plath
et al. 1998). Thus, many types of N-terminal secretory
signal sequences have been developed for each host system
and yeast pre-pro-sequences (e.g., mating pheromone α-
factor signal MFα1) are used most commonly (Brake et al.
1984; Fuller et al. 1989). The pre- and pro-cleavage sites in
the signal peptides are processed stepwise in the ER and
Golgi apparatus, respectively, during trafficking, and make
it easy to confirm traffic flow of the target protein from the
cytosol to the Golgi apparatus via the ER. In the fission
yeast S. pombe, heterologous proteins of Escherichia coli
phytase, human lysosomal acid lipase, and interleukin-6
were secreted at high yields using a pre–pro-secretory
signal peptide P4, which is derived from the fission yeast
mating pheromone P-factor precursor (Giga-Hama 1997).
This signal sequence (P3 or P4) includes a pre–pro
cleavage region and a dibasic site, Lys-Arg, that is
recognized by endoprotease in the Golgi apparatus. In
contrast, cellulases of the fungus T. reesei are secreted at
high levels when using their own signal sequences but not
with the P4 signal (Okada et al. 1998a, b). By comparing
different signal peptides for secretion of green fluorescent
protein (GFP) and other heterologous proteins in fission
yeast, the signal sequence of Cpy1p, a vacuolar carboxy-
peptidase Y (CPY), exhibited better secretion than the P-
factor signal (Kjaerulff and Jensen 2005). Recently, using
the viral K28 preprotoxin (pptox) signal peptide, which is a
viral secretion signal peptide derived from the K28
preprotoxin precursor of the yeast K28 virus toxin, GFP

was secreted from four yeast species, Candida glabrata, P.
pastoris, S. cerevisiae, and S. pombe, which indicated the
potential of the viral signal peptides as unique tools in
recombinant protein production (Eiden-Plach et al. 2004).
Thus, optimization of signal peptides is especially useful for
secretion of some heterologous proteins, which are ineffi-
ciently led into the ER. In some cases, however, signal
sequence optimization is almost inefficient for leading the
target protein to the ER. As reported very recently, a major
determinant of whether a protein follows the co- or post-
translational pathway is not only the sequence of the
N-terminal signal peptide but also the properties of the
signal-anchor sequences (Berndt et al. 2009; Kida et al.
2009). Therefore, different approaches, such as fusion
expression with other protein molecules or subdomains,
tags, signal-anchor peptides may give improved results.

However, in some cases, secretory proteins are retained
intracellularly without complete secretion, even though they
have entered the ER lumen and folded into their native
structure. This implies that other rate-limiting factors
operate during the ER-to-Golgi or post-Golgi trafficking
and the necessity for genetic optimization for membrane
trafficking. Such trafficking pathways are known to be
supported by numerous membrane proteins, and some of
them are still not well characterized. Therefore, genetic
optimization of intracellular vesicular traffic pathways is
not simple, and identification of the rate-limiting step in the
trafficking flow is the most important step. In our recent
study on the secretory production of recombinant human
growth hormone (hGH) from engineered fission yeast
strains, intracellular retention of partial hGH was found,
which was known to have resulted mainly from Golgi-to-
vacuole mis-sorting (Idiris et al. 2010). Such vacuolar mis-
sorting is known to be caused mainly by the vacuolar
protein sorting (vps) receptor Vps10p, which is responsible
for recognition and targeting of vacuolar carboxypeptidase
Y (CPY, which is encoded with genes Cpy1+ and PRC1+,
respectively, in S. pombe and S. cerevisiae) to the vacuole
(Iwaki et al. 2006). Thus, Vps10p is referred to as a CPY
receptor, and its vacuolar sorting pathway has been named
as a CPY pathway. In the late-Golgi compartment, other
enzymes that are destined for the vacuole are known to be
separated from secretory proteins by binding to the receptor
Vps10p (Vida et al. 1993; Marcusson et al. 1994). This
suggests the presence of a Vps10p-mediated Golgi-to-
vacuole protein mis-sorting pathway that may result in
vacuolar accumulation of secretory proteins in yeast. In S.
cerevisiae, there have been several similar reports about the
positive effects of the vps10 deletion on heterologous
protein secretion (Holkeri and Makarow 1998; Hong et al.
1996; Zhang et al. 2001).

As a result of the important physiological roles of the
yeast vacuoles, the vacuolar traffic pathway has become
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more complex, and its modification is not simple (Banta et
al. 1988; Raymond et al. 1992; Bonangelino et al. 2002;
Takegawa et al. 2003). In contrast to the above result, vps10
deletion has no effect on vacuolar retention of an insulin-
containing fusion protein that is secreted from S. cerevisiae,
whereas deletion of another five vps genes (vps4, vps8,
vps13, vps35, and vps36) enhances heterologous protein
secretion (Zhang et al. 2001). It is difficult to block
completely the vacuolar mis-sorting pathway by a single
vps10 deletion because of the presence of another vacuolar
sorting pathway, the alkaline phosphatase (ALP) pathway
(Burd et al. 1998; Conibear and Stevens 1998). Transport
of proteins through the ALP pathway to the vacuole
requires the function of the adaptor protein (AP) complex
AP-3 and Vps41p, which is also known as the AP-3
pathway (Darsow et al. 2001). Therefore, like other
intracellular vesicular traffic pathways, genetic modification
of the vacuolar mis-sorting pathway is not simple and is
probably protein specific, which indicates the necessity of
further systematic analysis of gene functions.

By screening an S. cerevisiae mutant library, Kanjou et
al. (2007) have identified that deletion of the gene MON2,
which encodes a scaffold protein for vesicle formation
located in the late-Golgi, enhances secretion of recombinant
luciferase. Overexpression of BiP and disruption of the
Golgi-resident calcium-ATPase-encoding gene, PMR1, syn-
ergistically stimulate secretion of bovine prochymosin but
not plant thaumatin in yeast (Harmsen et al. 1996).
Furthermore, Ruohonen et al. (1997) have reported that
overexpression of the yeast syntaxins, Sso1p or Sso2p,
which act at the targeting/fusion of the Golgi-derived
secretory vesicles to the plasma membrane, resulted in 4-
or 6-fold enhanced secretion of Bacillus α-amylase or
invertase, respectively, in S. cerevisiae. These results
indicate the importance of genetic modification of the
late-Golgi to plasma membrane traffic, besides blocking the
vacuolar mis-sorting that is directed from the late-Golgi to
the vacuole.

Although some studies have demonstrated the possible
application of traffic modification in strain engineering, it
seems to be difficult to block completely or change a flow
direction or rate by modifying one or a few genes that are
related to the trafficking, because of the complexity of
membrane trafficking mechanisms. Moreover, traffic
modification often affects cell viability or gives rise to
protein-specific effects. Thus, as mentioned above, trans-
formational fusion expression of the secretory target
proteins, which are hardly trafficked in the secretory
pathway, with other tags or secretion enhancer proteins
may be another useful approach to improve secretion.
Recently, Ahn et al. (2004) have reported that secretion of
Bacillus stearothermophilus L1 lipase was enhanced 7-fold
in S. cerevisiae by N-terminal molecular fusion with a

cellulose-binding domain (CBD) from Trichoderma harzia-
num endoglucanase II. By such an approach, the fusion
protein was secreted into the culture medium, and reached a
concentration of ∼1.3 g/L in high-cell-density, fed-batch
cultures. They identified that insertion of a Kex2p cleavage
site, which is cleaved in the Golgi apparatus, into the
junction between the two fused proteins, CBD-linker and
the target L1 lipase, resulted in the same level of enhanced
secretion. This indicates that the CBD-linker fusion
probably plays an important role in trafficking from the
ER to the Golgi apparatus. Furthermore, secretion efficiency
of Bacillus subtilis lipase A in S. cerevisiae is also
significantly enhanced by fusing with cell wall protein Pir4p
(Mormeneo et al. 2008). Thus, molecular fusion is also an
effective approach for traffic improvement, particularly when
strain optimization or molecular engineering of the target
protein itself is difficult.

Engineering proteases related to proteolytic degradation

One of the major problems that hinders effective secretion
and purification of secretory heterologous proteins from
yeast is post-secretory degradation of the recombinant gene
products by host-specific proteases, which are present in
relatively high levels in yeast, and are induced readily by
environmental stresses, especially during high-density
fermentation processes. There are some reports that indicate
contribution of cell lysis is to the presence of proteases in
the culture medium in yeast fermentations of P. pastoris
(Sinha et al. 2005; Xiao et al. 2006). The significance of
this problem increases during secretory production of
proteolytically sensitive heterologous proteins. Thus, a
number of approaches have been attempted as a solution,
such as control of cultivation conditions (e.g., culture pH
and temperature), changing medium composition (e.g.,
nitrogen and carbon sources), and addition of protease
inhibitors, peptone, casamino acids or specific amino acids
(Enfors 1992; Gonzalez-Lopez et al. 2002; Jones 1991;
Kang et al. 2000; Siegel and Brierley 1990; Turner et al.
1991). However, this approach is mostly host or protein
specific and limited in its effects. Consequently, genetic
manipulation of the host proteases can reduce host-specific
degradation; therefore, it has been used to develop many
protease-deficient yeast strains (Chung and Park 1998;
Copley et al. 1998; Kang et al. 1998; Komeda et al. 2002;
Jønson et al. 2004).

In the budding yeast, the major vacuolar proteases PrA
and PrB, encoded by PEP4 and PRB1, respectively, are
essential for maturation and activation of several vacuolar
proteases; therefore, the double-mutant ΔPEP4–ΔPRB1
generally is protease deficient (Jones 1991). A similar result
was obtained for P. pastoris (Gleeson et al. 1998) and C.
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boidinii (Komeda et al. 2002). The fission yeast proteases
Isp6p and Psp3p are known to be similar to the major
vacuolar serine protease B (Prb1p) in the budding yeast S.
cerevisiae. Expectedly, double deletion of the vacuole
protease genes psp3 and isp6 in fission yeast has shown a
significant reduction in extra- and intracellular protease
activity in our study (Idiris et al. 2006b). These main
vacuolar proteases are supposed to relate to the activation
of other vacuolar proteases such as Cpy1p, which is
transported from the late-Golgi to the vacuole via the
endosome, by its receptor Vps10p, and then matured and
activated in the vacuole by vacuolar proteases (Takegawa et
al. 2003). In S. cerevisiae, C. boidinii, and P. pastoris,
deletion of the vacuolar protease genes PEP4 and PRB1 has
been attempted, together with other protease genes such as
CPY1, YPS1, and KEX2 (Kang et al. 2000; Komeda et al.
2002; Werten and de Wolf 2005). It has been reported
recently that deletion of the mitochondrial metalloendopro-
tease gene CYM1 in S. cerevisiae not only reduced
intracellular proteolysis but also enhances the secretion of
heterologously expressed peptides such as growth hormone,
pro-B-type natriuretic peptide, and pro-cholecystokinin
(Jønson et al. 2004). This implies that some vacuolar or
other intracellular proteases also share the early secretory
pathway for their trafficking, and thus, their deletion is
important for control of protein degradation in the secretion
pathway.

However, the approaches described above were based
mainly on deletion of a few proteases and may have a
limited effect on the control of protein degradation. Thus,
systematic screening of proteases and their multiple
modifications are expected to be more useful for minimi-
zation of proteolytic degradation during production of
secretory proteins. As a novel approach for systematic
screening and multiple deletion of yeast protease genes, we
attempted recently to construct a set of single protease-
deficient mutants in the fission yeast S. pombe by
respective disruption of 52 dispensable protease genes
(Idiris et al. 2006a). These putative protease genes were
selected depending on the fission yeast genomic database
(in which a total of 91 proteases were listed). Genes for
proteases that are involved in the proteasome system or
required for cell viability were avoided. By screening the
resultant protease deletants for secretion of recombinant
hGH, a proteolytically sensitive model protein, we suc-
ceeded in selecting 13 deletant strains, which were effective
for hGH secretion (Idiris et al. 2006a). Deleted protease
genes in such selected strains included atg4, cdb4, fma2,
isp6, pgp1, psp3, sxa2, oma1, ppp16/SPBC1711.12, ppp20/
SPAC4F10.02 , ppp51 /SPAC22G7.01C, ppp52 /
SPBC18A7.01, and ppp60/SPCC1919.12C. However, only
two genes, sxa2 and ppp16, are predicted to encode
secretory proteases, whereas the others code for intracellu-

lar proteases. Furthermore, we have attempted multiple
deletion of the above-selected protease genes and have
succeeded in creating a multiprotease-deficient strain,
namely A8, in which eight protease genes were multiply
deleted (Fig. 2) (Idiris et al. 2010). The resultant
multiprotease-deficient strain A8 gave approximately 30-
fold enhanced hGH secretion, which indicates the impor-
tance of systematic screening and multiply deletion of
proteases.

The resultant multiprotease-deficient strain A8 is not
only effective for heterologous secretion but also useful
for improvement of intracellular heterologous expression
(unpublished observations), probably because of deletion of
multiple intracellular proteases. Among eight proteases
multiply deleted in the A8 strain, Psp3p and Isp6p are
two major vacuolar serine proteases, Atg4p is a cytosolic
cysteine protease required for autophagy (Klionsky et al.
2003), Fma2p is a cytosolic aminopeptidase specific to N-
terminal methionine, Oma1p is a mitochondrial membrane
protease, and Ppp20p is a vacuolar/cytosolic aminopepti-
dase specific to N-terminal aspartate or glutamate. The
starvation-specific vacuolar protease Isp6p is also known to
be involved in autophagy and sexual development and is
released into the culture medium especially in the late stage
of cell cultivation (Nakashima et al. 2006). These results
also imply the importance of screening protease deletion
targets by practical secretion of ideal protease-sensitive
model proteins, which will go through the whole course of
the trafficking pathway and thus make it possible to screen
completely for intra- and extracellular dispensable proteases
that probably are related to proteolytic degradation.

Finally, as a general strategy for minimizing host-
specific total protease activity in heterologous protein
secretion, optimization of cell cultivation conditions must
be also considered besides using the multiprotease-deficient
strains. This is because of the difficulty of complete
deletion of all dispensable proteases and their complicated
regulation mechanism, which is controlled by cell growth
and cultivation conditions (e.g., temperature, pH, C/N-
source level, cell density, viability, and stresses).

Engineering of post-translational glycosylation

Protein glycosylation is a major post-translational modifi-
cation process in the yeast secretory pathway and confers
an advantage in the secretory production of heterologous
proteins that require glycosylation for proper folding and
biological activity. However, for the production of thera-
peutic glycoproteins intended for use in human and
animals, yeasts have been less useful because of their
inability to modify proteins with human or animal
glycosylation structures. In contrast to human-type glyco-
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sylation, yeast N-glycosylation is of the high-mannose type,
which confers a short in vivo half-life to the protein and
may render it less efficacious or even immunogenic
(Gerngross 2004). Therefore, the properties of post-
translational glycosylation in each yeast host system and
its optimization must be considered. This is especially
important in the case of producing human therapeutic
glycoproteins, which currently occupy about 70% of all
approved therapeutic recombinant proteins, with their
requirement for human-like N-glycosylation.

To overcome the disadvantage in the yeast glycosylation
(mainly N-type), “humanizing” of yeast glycosylation
systems has become the current main strategy for glyco-
engineering of yeast species. However, success in this
direction has been limited over the past decade, although
several approaches have been attempted. This is because N-
glycosylation is a complicated multi-step process that is
localized to the secretory pathway, and the complex
metabolic engineering of replicating the mammalian
glycosylation machinery in yeast requires the cloning and
functional expression of a large number of foreign
glycosylation pathway enzymes in the yeast host strains
(Bretthauer 2003; Gerngross 2004; Wildt and Gerngross
2005). Each enzyme in the glycosylation process catalyzes
a reaction that yields the substrate for the subsequent
enzyme, and must be targeted properly and function at high
efficiency in its location in the secretory pathway. Recently,
however, advances in the glycoengineering of yeast and the
expression of therapeutic glycoproteins with humanized N-
glycosylation structures have shown significant promise
using current post-genomic information.

Glycoengineering in yeast was started by deleting some
yeast-specific glycosyltransferases and introducing many
other genes responsible for human-like sugar-nucleotide
synthesis, their transport from the cytosol to the Golgi
lumen, as well as hydrolysis. It has been identified that

mammals and yeast share the initial biosynthetic pathway
for the synthesis of N-glycans in the ER (Hamilton and
Gerngross 2007; Chiba and Akeboshi 2009). Early steps in
N-glycan processing, which involve the assembly of the
core oligosaccharide, its site-specific transfer onto the
protein, and its trimming by several glycosidases in
the ER, are all highly conserved from yeast to humans.
However, a series of glycosyltransferase reactions in the
Golgi apparatus are distinctly different in humans compared
with yeast. In yeast, several mannosyltransferases act on the
N-glycan intermediate, and more than 50 mannose residues
are attached to yield high-mannose type N-glycoproteins
(Gemmill and Trimble 1999). Such large outer chains are
attached to the oligosaccharide cores of glycoproteins
during their export via the Golgi apparatus. A key gene
for humanized N-glycan production in yeast was estab-
lished in 1992, when a mutant strain (och1) of S. cerevisiae
was isolated (Nagasu et al. 1992). It was found that
formation of the yeast-specific, large outer chain is initiated
by α-1,6-mannosylatransferase that is encoded by the
OCH1 gene, deletion of which blocks outer chain elonga-
tion. Och1p is highly conserved in all yeast species with the
identical activity of transferring an initial mannose residue
to an N-glycan intermediate (Man8GlcNAc2) in the Golgi
apparatus, and its deletion causes a loss of hyper-
mannosylated structure in the secreted glycoproteins. It
was further identified that deletion of another two genes
MNN1 (encoding α-1,3-mannosyltransferase) and MNN4
(encoding a positive regulator for phosphomannosyltrans-
ferase; Mnn6p), together with OCH1 leads to the produc-
tion of an intermediate N-glycan structure identical to the
human structure (Chiba et al. 1998; Nakanishi-Shindo et al.
1993). This has provided the basis for the humanization of
yeast glycans. The recent production of humanized sugar
chain was achieved in the methylotrophic yeast P. pastoris
by deleting glycotransferase genes alg3 and och1 and

Fig. 2 Schematic representation of an example of engineering of the
fission yeast S. pombe strains by multiple gene modification. A
multiprotease-deficient strain A8 was constructed by deleting eight
intra- and extracellular proteases to minimize proteolytic degradation
in heterologous protein secretion (Idiris et al. 2010). All resultant
multiprotease-deletant strains were named with their group name A

plus the total number of deleted protease genes, such as A1–A8. Using
the resultant strain A8, A8-vps10Δ was created by deleting the
vacuolar protein sorting receptor gene vps10, whereas three A8-PDI+

strains were constructed by, respectively, homogenously introducing
PDI genes (Mukaiyama et al. 2010)
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introducing several glycosylation-related genes such as
MnsI, GnTI, GnTII, GalT, and SiaT (Hamilton et al. 2003;
Hamilton and Gerngross 2007). This elegant technique
used combinatorial libraries that consisted of transmem-
brane domains of known Golgi- and ER-localized proteins,
and catalytic domains of several glycosyltransferases and
glycosidases from many species. Hamilton et al. (2006)
also succeeded in the final stage of humanization of transfer
of sialic acid onto terminal β-1,4-galactose sugars of
complex glycoproteins, by introducing key enzymes that
are required for CMP–sialic acid biosynthesis and sialyl-
transferase. Using such a fully humanized yeast strain,
secretory production of sialylated human-type recombinant
erythropoietin was demonstrated (Hamilton et al. 2006).

Besides the above N-glycosylation engineering, the
glycoengineering of yeasts also includes O-glycosylation,
which is characterized by shorter glycan structures. How-
ever, unlike N-glycosylation pathways, O-glycosylated
modifications (other than O-Man) have not been attempted
in yeast because of the lethality of the deletion of the
O-mannosyltransferases (Gemmill and Trimble 1999).
Recently, two modified production systems (a mucin-type
O-glycosylation and O-fucosylation) for mammalian-type
O-glycoproteins have been created in S. cerevisiae by
introducing several genes (Oka and Jigami 2006; Chigira et
al. 2008). Furthermore, our group recently identified six α-
1,2-mannosyltransferase gene homologs, namely omh1–
omh6, which are related to O-glycosylation of the fission
yeast S. pombe, and has found that deletion of omh1 blocks
elongation of O-linked oligosaccharides (Ikeda et al. 2009).
The resultant omh1Δ strain will be useful for controlling
O-glycosylation or further glycoengineering in fission
yeast. Recently, we have shown that N- and O-linked
oligosaccharides completely lack galactose residues in the
gms1Δ-och1Δ double-mutant strains of S. pombe (Ohashi
and Takegawa 2009). The N-linked oligosaccharides of
gms1Δ-och1Δ cells consist of α-1,2-linked Man-extended
core oligosaccharides (Man8–12GlcNAc2), from which the
fission-yeast-specific α-linked Gal residues are completely
absent. These α-1,2-linked Man-extended core structures
might not cause an immune response and could therefore be
better tolerated in the human body. Still, such compounds
could be quickly turned over in the human body (Wildt and
Gerngross 2005). Next steps for humanization of the S.
pombe N-linked oligosaccharides are screening and intro-
duction of the active α-1,2-mannosidase into S. pombe of
the screened α-1,2-mannosidase genes. These studies are
now under way.

Success in the full humanization of N-glycosylation in P.
pastoris implies a similar possibility in other yeast species
such as the fission yeast S. pombe and the budding yeast S.
cerevisiae. The industrial production of recombinant
proteins in yeast is a well-established technology; therefore,

it is reasonable to expect the impact of glycoengineered
yeast strains to make a significant breakthrough in the
biopharmaceutical production of human glycoproteins.

Perspective

Novel post-genomic information that involves genomic,
proteomic, transcriptomic, or metabolic databases offers a
general solution for yeast strain engineering. One approach
is to screen yeast cDNA-overexpression libraries for
improved secretion of heterologous proteins. Using such
an approach, Shusta et al. (1999) have reported that the
levels of surface-displayed single-chain T-cell receptors
correlate strongly with the soluble expression of the
respective proteins. Recently, high-throughput screening
for potential secretion enhancers by flow cytometry and cell
sorting have been used to attempt to isolate overproducing
clones (Mattanovich and Borth 2006). Transcriptome-based
screening of a yeast cDNA library in S. cerevisiae surface
display strains has identified cell wall proteins (Ccw12p,
Cwp2p, and Sed1p), ribosomal subunit protein Rpp0p
(Wentz and Shusta 2008), and the PDI assistant Ero1p
(Gross et al. 2004) as beneficial for the secretion of various
antibody fragments (Wentz and Shusta 2007). A similar
approach has been used to improve membrane protein
production in S. cerevisiae, based on engineered expression
of Bms1p, which is involved in ribosomal subunit assembly
(Bonander et al. 2009; Rakestraw et al. 2006). Previously,
they had identified by transcriptome analysis of S.
cerevisiae that deletion of three transcription factors,
Gcn5p, Spt3p, and Spt5p is effective for secretion of
glycerol facilitator Fps1 (Bonander et al. 2005).

Furthermore, genome-wide analytical tools such as DNA
microarrays are regarded as data mining sources for
physiological effects, stress regulation, and host engineer-
ing. Sauer et al. (2004) have analyzed the differential
transcriptome of a P. pastoris strain that overexpresses
human trypsinogen compared with a non-expressing strain.
Thirteen of the 524 significantly regulated genes were
selected, and their S. cerevisiae homologs were overex-
pressed in a P. pastoris strain that produced a human
antibody Fab fragment (Gasser et al. 2007). In that study,
five previously known secretion helpers (Pdi1p, Ero1p,
Sso2p, Kar2p/BiP, and Hac1p), as well as six novel,
hitherto unidentified factors, Bfr2p and Bmh2p, the
chaperones Ssa4p and Sse1p, and the vacuolar ATPase
subunits Cup5p and Kin2p, proved their benefits for
secretion of antibody in P. pastoris (Gasser et al. 2007).

Using several classic and novel genome-wide screening
approaches, many yeast genes have been found that are
related to secretion engineering. Examples of some genes
for which co-expression or deletion is beneficial for
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secretion are listed in Table 1. However, it is clear from the
list that the identified genes vary in function, and their
single modification may have a limited effect on protein
secretion. This indicates the necessity of multiple modifi-
cations, such as knockout, knockdown, or co- or over-
expression of several genes. Recently, we have investigated
multiple modification of the fission yeast S. pombe by
combining several genetic manipulations (Fig. 2). In our
study, introduction of PDI genes or deletion of the vacuolar
sorting receptor gene vps10 was attempted after multiply
deleting eight proteases in a single strain. The resultant

strains A8-PDI+ (Mukaiyama et al. 2010) and A8-vps10Δ
showed 50–100% enhanced heterologous protein secretion
compared with the A8 parental strain, which already had
about a 30-fold increase in hGH secretion (Idiris et al.
2010; Takegawa et al. 2009). Such results clearly demon-
strate the synergistic effect of multiple genetic modifica-
tions in strain engineering, although further combination of
other modifications is still required. Moreover, we are also
trying to combine such multiple modifications of the
secretion pathway with large-scale chromosome deletions
(known as the minimum genome factory or MGF project)

Table 1 Some genes modified in strain engineering for secretion improvement

Class Gene Product
localization

Function References

Folding and QC system CNE1 ER membrane Glycoprotein chaperone (calnexin) (Sc) Klabunde et al. 2007

ERO1 ER membrane PDI assistant Gross et al. 2004; Lodi et al. 2005

HAC1 Nucleus Transcriptional activator (Sc) Schröder and Kaufman 2005;
Valkonen et al. 2003

JEM1 ER membrane,
MMP

DnaJ-like co-chaperone (Sc) Payne et al. 2008

KAR2 ER lumen BiP, a major Hsp70 chaperone
in the ER (Sc)

Robinson et al. 1994;
Harmsen et al. 1996

PDI ER lumen Protein disulfide bond formation Shusta et al. 1998; Smith et al. 2004

SSA4 Cytoplasm Cytosolic chaperone (Hsp70 family) (Sc) Gasser et al. 2007

SSE1 Cytoplasm Cytosolic co-chaperone
(Hsp70 family) (Sc)

Gasser et al. 2007

UBI4 Cytoplasm,
nucleus

Ubiquitin, required for poly-ubiquitination Bao and Fukuhara 2001;
Chen et al. 1994

Transcription, translation,
and signaling

GCN5a Nucleus Histone acetyltransferase (Sc) Bonander et al. 2005

RPP0 Cytoplasm Component of the large ribosomal subunit Wentz and Shusta 2008

SPT3a Nucleus Histone acetyltransferase complex subunit Bonander et al. 2005

SPT5a Nucleus, mit. Transcriptional elongation factor Bonander et al. 2005

KIN2 Plasma membrane Protein kinase regulating exocytosis (Sc) Gasser et al. 2007

Trafficking BFR2 Nucleus,
nucleolus

ER-to-Golgi transport, rDNA
processing (Sc)

Gasser et al. 2007

BMH2 Cytoplasm,
nucleus

Vesicle transport, multi-process regulation
(14-3-3 protein) (Sc)

Gasser et al. 2007

CUP5 Vacuole
membrane,
MMP

Vacuolar ATP synthase subunit (Sc) Gasser et al. 2007

MON2a Golgi membrane Golgi-to-endosome traffic, endocytosis
and vacuole integrity (Sc)

Kanjou et al. 2007

PMR1a ER membrane,
MMP

Ca2+ and Mg2+ transporting ATPase Harmsen et al. 1996

PSE1 Cytoplasm,
nucleus

Nuclear import of ribosomal proteins (Sc) Chow et al. 1992

SSO1 Plasma membrane Secretory vesicle fusion with the plasma
membrane (Sc)

Aalto et al. 1993;
Ruohonen et al. 1997

SSO2 Plasma membrane Secretory vesicle fusion with the plasma
membrane (Sc)

Aalto et al. 1993;
Ruohonen et al. 1997

VPS10a Golgi membrane,
late-Golgi

Vacuolar protein sorting Hong et al. 1996; Idiris et al. 2010;
Zhang et al. 2001

Sc S. cerevisiae, Sp S. pombe, mit. mitochondrion, MMP multi-pass membrane protein
a Deletion is beneficial for protein secretion
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in S. pombe, to simplify the genome-wide regulation system
that may directly or indirectly affect protein secretion
(Giga-Hama et al. 2007; Takegawa et al. 2009). Further
optimization of the cultivation process for the multiply
engineered S. pombe strains also has been studied and
found that changes in medium components and addition of
dextran sodium sulfate, a poly-anion surfactant, to the
culture medium of the engineered A8 strain significantly (7-
fold) enhanced secretion efficiency of recombinant human
transferrin (Mukaiyama et al. 2009).

In conclusion, on the basis of the well-established
vector/fermentation optimizations, systematic modification
of secretion pathways is a general strategy for yeast
secretion engineering. Rapidly progressed genome-wide
novel approaches will provide new systematic information
and solutions to overcome unknown bottlenecks in the
yeast secretion system.
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