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Microbial production of building block chemicals and polymers
Jeong Wook Lee1,2, Hyun Uk Kim1,3, Sol Choi1, Jongho Yi1 and
Sang Yup Lee1,2,3
Owing to our increasing concerns on the environment, climate

change, and limited natural resources, there has recently been

considerable effort exerted to produce chemicals and materials

from renewable biomass. Polymers we use everyday can also

be produced either by direct fermentation or by polymerization

of monomers that are produced by fermentation. Recent

advances in metabolic engineering combined with systems

biology and synthetic biology are allowing us to more

systematically develop superior strains and bioprocesses for

the efficient production of polymers and monomers. Here, we

review recent trends in microbial production of building block

chemicals that can be subsequently used for the synthesis of

polymers. Also, recent successful cases of direct one-step

production of polymers are reviewed. General strategies for the

production of natural and unnatural platform chemicals are

described together with representative examples.
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Introduction
Microorganisms are endowed with capabilities to produce

various chemicals and materials, many of which are

important to our daily life. Early studies on microbial

production of these chemicals were mainly carried out by

identifying appropriate microorganisms that naturally

overproduce target products, improving their perform-

ance by random mutagenesis, and by optimizing the

fermentation and downstream processes. The advent of

metabolic engineering contributed significantly to enhan-
Current Opinion in Biotechnology 2011, 22:758–767 
cing the performance of microbes in producing chemicals

by many different means, including optimal induction of

enzymes in the target pathway, elimination of competing

pathways, redirection of central metabolism towards the

target pathway, supplementation of necessary cofactors,

and modulation of redox potential [1,2]. More recently,

metabolic engineering has been integrated with systems

biology for understanding of global-scale metabolic and

gene regulatory characteristics, followed by more system-

wide identification of target genes to be manipulated

[1,3]. Furthermore, emergence of synthetic biology has

broadened the spectrum of target products, such that

even unnatural chemicals can be produced to satisfactory

levels [4,5]. Such systems metabolic engineering

approaches are becoming increasingly powerful in devel-

oping microbial strains for the production of chemicals

and materials.

Here, we review the strategies employed for the pro-

duction of platform chemicals for subsequent polymer

synthesis and direct in vivo production of polymers

together with recent representative examples. Some chal-

lenges remaining to realize efficient production of chemi-

cals and polymers are described together with possible

strategies to overcome.

Microbial products used in polymer industry
Polymers refer to macromolecules that are composed of a

series of low molecular weight monomers. They can be

generally classified into condensation and addition poly-

mers based on their polymer structures [6]. Condensation

polymers are synthesized by eliminating small molecules

such as water during polymerization, and/or by joining

the repeating units through their functional groups to

make ester, amide, urethane, sulfide, and ether bonds.

Polyamides synthesized from diamines and dicarboxylic

acids are the most common examples of condensation

polymers. Polymers that do not satisfy any of the afore-

mentioned criteria for the condensation polymers can be

categorized as addition polymers. For instance, building

blocks that have carbon-carbon double bonds can be used

as a monomer for addition polymers [6]. Thus, micro-

bially produced chemicals for polymer should satisfy

these criteria (Figure 1). Dicarboxylic acids (adipic,

fumaric, glucaric, malic, and succinic acids), diamines

(cadaverine and putrescine), and diols (propanediols and

butanediols) are the most common monomers used in

condensation polymerization  reactions. On the contrary,

itaconic acid and isoprene containing one and two car-

bon-to-carbon double bond(s), respectively, are typical
www.sciencedirect.com
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Figure 1
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Microbially produced natural or unnatural building block chemicals used for polymer synthesis as well as polymers that can be directly produced in

vivo. Numbers below each chemical name in the inner circle designate the amount of total annual production where MT represents metric ton.

Information on annual production and applications of each building block chemical in polymer industry was obtained from the following references:

1,3-propanediol [57], 1,4-butanediol [58], 3-carboxymuconic acid [38], adipic acid [30], fumaric acid [59], glucaric acid [60], succinic acid [61], isoprene

[36��,62,63], itaconic acid [18,21], lactic acid [7,8], and putrescine [33�]. Annual production of cadaverine and malic acid was estimated from previous

publications [7,34�]. Structure of poly [styrene-co-trimethyl-3CM] was deduced from the reference [38]. Colored balls across layers indicate specific

functional group(s) within chemical structures, which are specified by: red for dicarboxylic acids, yellow for diamines, blue for alkenes or dienes, purple

for carboxylic acids, and green for diols. It should be noted that colored regions of each polymer in the outer layer specifically indicate building block

chemicals having specific functional groups indicated by the aforementioned colors. Abbreviations are: 3CM, 3-carboxymuconic acid; 3HB, 3-

hydroxybutyrate; AC, acrylate; AM, acrylamide; BDO, butanediol; HA, hyaluronic acid; IT, itaconate, LA, lactate; ODO, octanediol; PBSA, poly(butylene

succinate-co-butylene adipate); PBSPS, poly(butylene succinate-co-propylene succinate); PBST, poly(butylene succinate-co-butylene terephthalate);

PDC, poly(1,10-decanediol citrate); PDO, propanediol; PES, poly(ethylene succinate); PHA, polyhydroxyalkanoate; PHB, polyhydroxybutyrate; PHP,

polyhydroxypropionate; PHV, polyhydroxyvalerate; PLA, polylactate; POC, poly(1,8-octanediol citrate); PPS, poly(propylene succinate); PPT,

poly(propylene terephthalate).
example monomers for addition polymerization. The

strategies employed for their production by microbial

fermentation are described below. Despite their great

importance, diols are not covered in this paper as they are

covered by another article in this issue.
www.sciencedirect.com 
Production of building block chemicals by
natural microbes
When we consider microbial production of building block

chemicals for polymers, the most preferable way is to

explore microorganisms in the nature that can efficiently
Current Opinion in Biotechnology 2011, 22:758–767
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Table 1

Microbial production of building block chemicals and polymers.

Chemicals and

polymers

Organisms Carbon

source

Strategy used Titer (g/L) Productivity (g/L/h) Yield (g/g)a References

Succinic acid Actinobacillus

succinogenes

Glucose Adaptive evolution and screening 105.8 1.36 0.82 [13]

Anaerobiosprillum

succiniciproducens

Glucose Integrated fermentation and separation

process combining cell-recycled continuous

bioreactor and electrodialysis

83 10.4 0.88 [11]

Mannheimia

succiniciproducens

Glucose Metabolic engineering for eliminating

competing pathways

52.4 1.80 0.76 [10]

Corynebacterium

glutamicum

Glucose Metabolic engineering for reducing

byproducts and fed-batch cultivation

with high cell density inoculum

146 3.20 0.90 [12]

Escherichia coli Glucose Repetitive metabolic and evolutionary

engineering to eliminate byproducts

86.6 0.90 0.92 [22]

Escherichia coli Glucose Repetitive metabolic and evolutionary

engineering to eliminate byproducts

71.6 0.75 1.00 [23]

Yarrowia lipolytica Glycerol Random mutagenesis and screening after

metabolic engineering

45.5 0.27 0.36 [26]

Itaconic acid Aspergillus terreus Glucose Random mutagenesis and screening 82.3 0.57 0.54 [19]

Escherichia coli Glucose Metabolic engineering and synthetic biology

for constructing itaconic acid pathway

4.16 0.057 0.52 [25]

Lactic acid Lactobacillus

plantarum

Corn starch Metabolic engineering for producing

optically pure D-lactic acid by using raw

corn starch as a carbon source

86 4.51 0.89 [17]

Lactococcus lactis Glucose Bioprocess development by using cell

recycling continuous fermentation

30.1 33.1 0.91 [16]

Lactobacillus

delbrueckii

Hydrolyzed

cane sugar

Random mutagenesis 135 3.4 0.90 [15]

Lactobacillus casei Glucose Cell recycling continuous fermentation

process with near infrared spectroscopy-aided

cell culture monitoring

75 138 0.98 [14]

Escherichia coli Glucose Metabolic engineering for eliminating competing

pathways and byproduct-forming pathway

138 3.54 0.99 [24]

Glucaric acid Escherichia coli Glucose Synthetic biology and metabolic engineering to

construct new pathways by adopting eukaryotic

enzymes

1.13 0.016 0.153 [27��]

Escherichia coli Glucose Synthetic biology and metabolic engineering by

using synthetic protein scaffolds for more efficient

biochemical conversion of metabolites

2.37 0.049 - [29]

Isoprene Escherichia coli Glucose Synthetic biology and metabolic engineering to

construct a novel pathway having enzymes from

diverse organisms

60 2 0.11 [37]

Putrescine Escherichia coli Glucose Metabolic engineering to eliminate competing

pathways and enhance fluxes towards putrescine

pathway

24.2 0.75 0.168 [33�]

Cadaverine Escherichia coli Glucose Metabolic engineering to eliminate competing

pathways and enhance fluxes towards cadaverine

pathway

9.61 0.32 0.131 [34�]
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produce them. Fumaric, itaconic, lactic, malic, and suc-

cinic acids are the typical chemicals and are endogenously

produced by naturally isolated microorganisms: fumaric

acid by Rhizopus species, itaconic and malic acids by

Aspergilli, lactic acid by Lactobacilli, and succinic acid

by rumen bacteria. These acids can be used as monomers

for the synthesis of different polymers such as poly(pro-

pylene fumarate), poly(acrylate-co-itaconate), polylactate,

polymalate, and poly(butylene succinate), respectively.

Other diverse polymers that can be synthesized from

these platform chemicals or their derivatives as monomers

are displayed in Figure 1 with their chemical structures.

In particular, as succinic, lactic, and itaconic acids have

more diverse uses in polymer industry and are produced

at relatively high titers with industrially acceptable pro-

ductivities and yields (Table 1), much recent effort has

been concentrated on their commercialization by

microbial fermentation [7–9].

Several well-known native succinic acid producers are

Actinobacillus succinogenes, Anaerobiosprillum succiniciprodu-
cens, Mannheimia succiniciproducens, and their various

derivatives, which can produce 52–106 g/L of succinic

acid with productivities and yields of 1.36–10.4 g/L/h and

0.76–0.88 g/g glucose, respectively, while fixing CO2

through the reaction catalyzed by phosphoenolpyruvate

carboxykinase (Table 1) [10–13]. In the case of lactic acid

production, Lactobacillus plantarum, Lactococcus lactis, Lac-
tobacillus delbrueckii, and Lactobacillus casei have been

reported to produce 30–135 g/L of lactic acid with pro-

ductivities and yields of 3.4–138 g/L/h and 0.89–0.98 g/g

from diverse carbon substrates, respectively [14–17].

Recently, L. plantarum producing optically pure 86 g/L

D-lactic acid has also been reported (Table 1), which

demonstrates an advantage of microbial production of

platform chemicals composed of only one optically

specific stereoisomer. Meanwhile, Aspergillus terreus is

the most widely used fungus for the commercial pro-

duction of itaconic acid [18,19] using its cis-aconitic acid

decarboxylase as a key enzyme [20]. In fact, as fungal

fermentation process is considered economically more

competitive than chemical process for industrial level-

production of itaconic acid, their chemical process has not

been practiced commercially [21]. On the contrary, fuma-

ric and malic acids are produced by chemical processes

owing to their cost competitiveness even though there are

various natural producers [9]. It is expected that microbial

production of these chemicals can be improved to the

economically competitive level by adopting recent meta-

bolic engineering strategies described in next section and

Box 1, and more bioprocesses will be commercialized.

Production of building block chemicals by
engineered microorganisms
Some microbial metabolites that constitute important

industrial polymers are not naturally produced because

cells do not have respective biosynthetic pathways or
Current Opinion in Biotechnology 2011, 22:758–767
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Box 1 General strategies for microbial production of building

block chemicals and polymers

Analysis of recent successful examples of chemicals and polymers

produced by microbial fermentation suggests important rational

steps to consider for their efficient production. The first possible

option is direct in vivo production of polymers by microorganisms,

as in the case of PHAs [41], PLAs [48��] and polyamides [40], if the

produced biopolymers are qualitatively and quantitatively competi-

tive against existing chemical processes. If this option is not

applicable, then microorganisms that can efficiently produce building

block chemicals constituting polymers need to be sought. It is often

the case that cells need to be metabolically engineered for the

enhanced production of these building block chemicals [10–

13,17,19,22–24,26]. For instance, there exist many microorganisms

that have metabolic pathways for the biosynthesis of building block

chemicals, but cannot excrete them into the medium; in this case,

gene manipulations can be performed to redirect fluxes towards the

target products and introduce respective exporters, as demon-

strated by putrescine and cadaverine production in E. coli [33�,34�].

Alternatively, another production host that is amenable to gene

manipulation can be employed by introducing heterologous genes

encoding the biosynthetic pathways for the target chemicals, as

demonstrated for the microbial production of glucaric acid [27��],

isoprene [37], and 3CM [38]. This option holds true for chemicals

biosynthesized in mammalian or plant cells, and this particular step

requires delicate synthetic biological tools that can control the

proper expression of heterologous genes in microorganisms [29].

Once the production strains are developed by combined engineering

approaches described above, then they can be further subjected to

metabolic engineering aided with systems biological tools [48��],

metabolic evolution [22,23,56�] and/or bioprocess development

[11,37]. These steps can be repeated until satisfactory performance

is achieved.
exporters. Thus, cells need to be metabolically engin-

eered for the production of such metabolites. For

instance, glucaric and adipic acids, isoprene, and 3-car-

boxymuconic acid (3CM) are monomeric chemicals for

polymers that are not synthesized by natural microbial

producers owing to the absence of their respective bio-

synthetic pathways. They can be produced by engineered

production hosts, mostly Escherichia coli, that is amenable

to metabolic engineering by introducing the correspond-

ing genes from diverse genetic sources (Figure 2). Several

important developments for (di)carboxylic acids, dia-

mines, and dienes are summarized below.

(Di)carboxylic acids

Naturally occurring products, including succinic, lactic,

and itaconic acids, have also been produced by metabo-

lically engineered E. coli strains by redirecting metabolic

fluxes towards the desired products (Table 1). One

notable example is the production of 87 g/L of succinic

acid by E. coli through so called metabolic evolution that

combines metabolic engineering and adaptive evolution

strategy [22,23]. Lactic acid could also be successfully

produced by E. coli knockout mutant strain, and one of

the best examples showed production of 138 g/L of lactic

acid with a yield of 0.99 g lactic acid/g glucose and an

overall productivity of 3.54 g/L/h [24]. On the contrary,
Current Opinion in Biotechnology 2011, 22:758–767 
production of itaconic acid by an engineered E. coli strain

was not as competitive as native fungal producers in terms

of production capability, attaining only 4.16 g/L of itaco-

nic acid in 72 h [25].

From an industrial perspective on the production of these

acids, cultivation of cells at low pH is important because

free acid form can be obtained without additional steps to

remove cationic counter ions during separation and puri-

fication process. This bioprocess was successfully demon-

strated by engineered acid-tolerant and osmo-tolerant

Yarrowia lipolytica strain whose genes encoding succinate

dehydrogenase was deleted and growth was enhanced via

random mutation. Consequently, 45.5 g/L succinic acid

was produced under low pH condition (Table 1) [26].

This example suggests that whole bioprocesses from

upstream to downstream processes should be considered

in an integrated way for the industrial level production of

building block chemicals.

Glucaric and adipic acids are starting materials for several

polymers: glucaric acid for poly(hexamethylene glucara-

mide) and adipic acid for nylon-4,6 and nylon-6,6,

respectively (Figure 1). Since they are not produced by

naturally isolated microorganisms, biosynthetic pathways

for these chemicals need to be constructed in an appro-

priate host organism for their production. For glucaric

acid, a direct synthetic pathway was recently constructed

in E. coli by introducing myo-inositol-1-phosphate

synthase from Saccharomyces cerevisiae, myo-inositol oxy-

genase from mouse, and urinate dehydrogenase from

Pseudomonas syringae (Figure 2) [27��], which contrasts

well against the already known complicated biosynthetic

route of glucaric acid via pentose phosphate pathway in

mammalian cells [28]. To enhance the production of

glucaric acid, a polypeptide scaffold composed of protein

domains that interact with one another was constructed to

keep three key enzymes together and facilitate the con-

version of metabolites through an engineered protein

complex. Cells equipped with this scaffold subsequently

increased glucaric acid titers up to 2.37 g/L, approxi-

mately 5-fold higher than that achieved without using

the scaffold system [29].

For adipic acid, Frost and colleagues developed a process

composed of both metabolic engineering and chemical

conversion. They first developed an E. coli strain that

produces 36.8 g/L cis,cis-muconic acid [30]. Subsequent

chemical reaction of hydrogenating cis,cis-muconic acid

led to adipic acid with a 0.97 g/g conversion yield at room

temperature [30]. Current research efforts are geared

towards designing biosynthetic pathways for adipic acid,

which bypasses the last step of chemical reaction, as

suggested in recent patents [31,32]. In these patents,

systems biological tools, such as software packages for

modeling and simulation of metabolic models and various

gene targeting algorithms, contributed to predicting
www.sciencedirect.com
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Synthetic pathways constructed to produce various platform chemicals and polymers including glucaric acid, adipic acid, isoprene, 3CM, PLA, and

P(3HB-co-LA), all of which are not naturally produced in wild-type E. coli. Synthetic pathways constructed by introducing heterologous enzymes or

evolved enzymes are colored red. Various genetic sources from mammalian (mouse) to archaea (Methanosarcina mazei) are indicated below the

respective enzyme names. Abbreviations for metabolites are: 3CM, 3-carboxymuconic acid; 3HB, 3-hydroxybutyrate; ACoA, acetyl-coenzyme A;

AACoA, acetoacetyl-CoA; CTL, catechol; DBZ, 3,4-dihydroxybenzoate; DHS, 3-dehydroshikimic acid; DMAPP, dimethylallyl pyrophosphate; G6P,

glucose 6-phosphate; GCA, D-glucuronic acid; HMGCoA, 3-hydroxy-3-methyl-glutaryl-CoA; IPP, isopentenyl diphosphate; LA, lactate; LCoA, lactyl-

CoA; MCA, cis,cis-muconic acid; Mev, mevalonate; MI, myo-inositol; MI1P, MI 1-phosphate; PCA, protocatechuic acid; PEP, phosphoenolpyruvate;

PLA, polylactate; PMev, phosphomevalonate; PPMev, diphosphomevalonate; PYR, pyruvate; VNT, vanillate. Abbreviations for enzymes are: AroY,

PCA decarboxylase; AroZ, DHS dehydratase; CatA, CTL 1,2-dioxygenase; HcaB, 4-hydroxy benzaldehyde dehydrogenase; Idi, IPP isomerase; Ino1,

MI1P synthase; IspS, isoprene synthase; LdhA, lactate dehydrogenase; MIOX, MI oxygenase; MvaE, AACoA thiolase/HMGCoA reductase; MvaS, Mev

synthase; MVK, Mev kinase; MVD, PPMev decarboxylase; PcaHG, protocatechuate 3,4-dioxygenase; Pct, propionate CoA-transferase; PflB, pyruvate

formate-lyase; PhaA, b-ketothiolase; PhaB, AACoA reductase; PhaC, PHA synthase; PMK, PMev kinase; PtsG, PEP-dependent glucose

phosphotransferase; SuhB, phosphatase; Udh, uronate dehydrogenase; VanAB, vanillate monooxygenase.
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possible combinations of gene knockout targets [32] and

their resulting theoretical maximum yield of adipic acid

[31]. These studies show important roles of systems and

synthetic biology in metabolic engineering by fully utiliz-

ing the wealth of genomic information in expanding the

spectrum of microbially producible chemicals [4].

Diamines

Putrescine (1,4-diaminobutane) and cadaverine (1,5-dia-

minopentane) can be combined with diverse diacids to

make polyamide 4 and 5 series, respectively: for example,

nylon-4,6 by polymerizing putrescine and adipic acid and

polyamide 54 by polymerizing cadaverine and succinic

acid (Figure 1) [33�,34�]. Recently, metabolic engineering

strategy was successfully employed to construct engin-

eered E. coli strains that efficiently produce putrescine

and cadaverine. Through system-wide metabolic engin-

eering that included deleting degradation and utilization

pathways, enhancing fluxes towards target products, and

amplifying the key enzymes (ornithine decarboxylase for

putrescine and lysine decarboxylase for cadaverine), the

engineered E. coli strains were able to produce 24.2 g/L

and 9.61 g/L of putrescine and cadaverine, respectively

(Table 1) [33�,34�]. In another study, cadaverine was

successfully produced by engineered Corynebacterium by

similar metabolic engineering approaches [35]. Although

production titers of these two building blocks need to be

further improved for industrialization, these exemplary

cases demonstrate the possibility of metabolic engineer-

ing that could replace the petrochemical synthetic process

of building block chemicals.

Dienes

Isoprene, also known as 2-methyl-1,3-butadiene, is a

five-carbon diene, and its polymer called poly(isoprene)

has mainly been extracted from rubber tree [36��].
Recently, Genencor and Goodyear have developed the

microbial process for isoprene production [36��]. They

synthetically constructed a pathway towards isoprene

production in E. coli by adopting genes from Enterococcus
faecalis, Methanosarcina mazei, S. cerevisiae, and Populus
alba (Figure 2) [37]. This work resulted in the production

of more than 60 g/L of isoprene with high purity by

collecting it from the off-gas emitted during microbial

fermentation [37]. Synthetic biological strategy also

enabled creation of unnatural 3CM, tricarboxylic acid

with a diene structure. Using E. coli as a biocatalyst, 4-

hydroxy benzaldehyde dehydrogenase, vanillate mono-

oxygenase and protocatechuate 3,4-dioxygenase from

Acinetobacter baylyi converted vanillin into 3CM with a

yield of 1 g/g (Figure 2 and Table 1). The produced 3CM

was chemically converted to trimethyl-3CM to make

poly(styrene-co-trimethyl-3CM), which can be applied

in the field of tissue engineering [38]. Although the

productivity and titer are low at the moment, this

example suggests another possibility and capacity of

microorganisms engineered to produce novel building
Current Opinion in Biotechnology 2011, 22:758–767 
blocks that do not exist in nature, but are industrially in

demand.

One-step direct microbial production of
polymers
In contrast to building block chemicals so far discussed,

microorganisms sometimes naturally produce, or can be

engineered to produce polymers directly by fermentation

without subsequent chemical processes. Microbial pro-

duction of polysaccharides has been well established (see

Figure 1) and thus is not covered in this paper. One step

microbial production of polymers is a preferred approach

because it allows delicate control of polymer composition

by combining metabolic intermediates of monomers at

varying ratios in one step biosynthetic process from

renewable resources, and does not require additional

costly processes involving environmentally harmful

chemical catalysts and intermediates.

Microbial production of polyesters and polyamides

Polyhydroxyalkanoates (PHAs) are microbial polyesters,

which accumulate inside cells under the growth limiting

conditions in the presence of excessive carbon source

[39,40]. PHAs have attracted great metabolic engineering

efforts in order to replace some of petroleum-based

plastics for sustainable development owing to their favor-

able features, including biodegradability, biocompatibil-

ity, and composition versatility with more than 150 known

monomers [41,42]. Some of recent metabolic engineering

efforts include control of PHA composition by genetically

attenuating fatty acid b-oxidation pathway for efficient

incorporation of externally supplied fatty acids [43,44],

production of PHAs from engineered methanol-utilizing

bacterium [45], and development of stress-induced sys-

tem for automatic induction of PHA production [46]. The

ultimate goal is to develop a cost-effective bioprocess for

PHAs with various industry-favorable properties, and for

this, Metabolix and ADM teamed up to commercially

produce PHAs.

Polylactic acid (PLA) is also an important polyester,

which is becoming increasingly popular in many indus-

tries. Microbial production of PLA and its copolymers had

not been possible until recently owing to the lack of

natural enzymes and pathways leading to the formation

of PLA. PLA is currently produced in two step processes:

microbial production of lactic acid followed by chemical

polymerization process. For the one-step fermentative

production of PLA and its copolymers (Figure 2), the

artificially evolved heterologous propionate CoA transfer-

ase and PHA synthase were introduced into E. coli [47–
50]. Central carbon metabolism of E. coli was sub-

sequently engineered to redirect metabolic fluxes

towards precursors of these biopolymers based on gen-

ome-scale metabolic simulation. The resulting strains

were able to produce PLA homopolymer from glucose

up to 11 wt% of dry cell weight and poly[3-hydroxybu-
www.sciencedirect.com
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tyrate(3HB)-co-LA] containing 55–86 mol% lactic acid up

to 56 wt% of dry cell weight from glucose and 3HB.

By introducing b-ketothiolase and acetoacetyl-CoA

reductase from Cupriavidus necator (Figure 2), P(3HB-

co-LA) containing 70 mol% lactic acid was successfully

produced up to 46 wt% of dry cell weight [48��]. In

addition, a more efficient bioprocess that does not require

inducer and succinic acid in the culture medium was

developed for the production of PLA and its copolymers

[51]. The approach of combining systems biology and

synthetic biology with metabolic engineering as demon-

strated in these studies should serve as a platform tech-

nology for production of other polymers.

Microbial production of polyamides was recently demon-

strated by the production of ultra-high MW (285 kDa)

spider silk protein, with potential applications in protec-

tive clothing and biomedical industries owing to its

exceptional mechanical strength, biodegradability and

biocompatibility [52�]. In this work, E. coli was metabo-

lically engineered to increase the pool of glycyl-tRNA

because the spider silk is enriched in glycine (ca. 43% of

total protein). Additional engineering and analysis of E.
coli strains using comparative proteomic analyses pro-

vided further insight into their production performance

and targets to be manipulated. Other notable polyamides

include poly-g-glutamate and e-poly-L-lysine, used for

drug delivery/cosmetics and feed preservatives, respect-

ively, whose microbial production needs to be enhanced

by metabolic engineering approaches described above

(Box 1) [40].

Conclusion
A range of microbially producible building blocks is

constantly expanding thanks to the recent advances in

metabolic engineering, systems biology, synthetic

biology, and bioprocess engineering. Constructing syn-

thetic pathways by using genes from various organisms

(and from nature through metagenome) and by creating

(or evolving at least) enzymes facilitates production of

building block chemicals and polymers that cannot other-

wise be produced in nature. Recently, multiplexed

approaches including metabolic evolution, global tran-

scription machinery engineering, trackable multiplex

recombineering, and multiplex automated genome

engineering that intersect borders among metabolic

engineering, genome engineering, systems biology,

synthetic biology, and evolutionary engineering have

been developed [53–55,56�]. Integrated use of these

emerging strategies will not only contribute to simul-

taneous engineering of multi-gene targets for enhanced

production of chemicals, but also systematic optimiz-

ation of new metabolic and gene regulatory networks

established in the production host. With these

advances, it is expected that more chemicals and

materials will be produced through microbial fermenta-

tion from renewable resources, which will consequently
www.sciencedirect.com 
contribute to establishing bio-based economy and

achieving low carbon green growth.
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