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Chapter 1. Total Energy (Cramer: chapters 1 and 2) 
 

Introduction 

 

This course will focus on computational chemistry. The first 

part of the course is related to Quantum Chemistry and the 

second part to Empirical Molecular Modelling. The Quantum 

Chemistry (QC) will focus mostly on the electrons wave function 

and total energy of the system. Most of the properties of a 

single molecule can be computed using QC but a group of 

molecules at finite temperature need some kind of dynamical 

simulations which can take the entropy into account. The 

dynamical simulations will use either Molecular Dynamics or 

Monte-Carlo simulations. These methods are mostly discussed in 

the second part of the course. The basics of electrons wave 

function and total energy have been discussed in course CHEM-

E4100, Quantum Mechanics and Spectroscopy, which is a 

prerequisite for this course.  

 

Total energy 

 

Before going to the wave functions and Schrödinger equation we 

can first look what can be learned from the atomic total energy. 

We assume that the electrons are at their ground state so the 

total energy depend only on the atomic coordinates.  

𝐸𝑡𝑜𝑡
𝑒𝑙 (𝑅1, . . 𝑅𝑁) 

Here we have used the Born-Oppenheimer approximation in which we 

have assumed that the atoms are point-like from the point of 



view of the electrons. Here we do not take into account the 

atomic wave functions. This is a very good approximation at room 

temperature and for all atoms except hydrogen. The atomistic 

quantum effects can be later taken into account using harmonic 

approximation near the minima of the total energy (This will be 

discussed later.) or using the Path-Integral Methods (not 

discussed in this course).  

We can always compute the forces acting on each atom 

𝐹𝐼 = −
𝜕𝐸𝑡𝑜𝑡

𝑒𝑙

𝜕𝑅𝐼
    𝑜𝑟   𝐹𝐼 = −

∆𝐸𝑡𝑜𝑡
𝑒𝑙

∆𝑅𝐼
= −

𝐸𝑡𝑜𝑡
𝑒𝑙 (𝑅𝐼) − 𝐸𝑡𝑜𝑡

𝑒𝑙 (𝑅𝐼 + ∆)

∆
   

The first equation means direct derivative and the second a 

numerical derivative.   

Several minimization algorithms can be 

used to minimize the molecules 

geometry. We can easily find the 

nearest minima from the starting 

geometry. Often the molecule will have 

several local minima. In simple 

molecules we can find the minima rather 

easily but unfortunately the number of 

minima will increase rapidly when the 

size of the molecule increases. There 

is an estimation that a cluster of 55 

atoms interacting with simple Lennart-

Jones potential would have 1021 minima! 

(Of course most of them are not 

relevant but there is still a huge 

amount of relevant ones. Relevant means 

that a minimum has a low energy.) Note 

that the problem has 3N-6 dimensions. 

(In the case of non-linear molecule. 

The -6 comes from the fact that we can fix the molecules center 

of mass, 3 coordinates, and its orientation, also 3 

coordinates.) There is no general method to estimate the number 

of minima of a relatively large molecule but it is very high. 

For this reason, any computational research of large molecules 

like proteins is difficult or impossible if we do not have a 

good guess of the structure. To some extent, this is true for 



solid materials too but still for most molecules we are 

interested in chemistry this is not a (big) problem.   

 

 

Minimization 

 

The minimization is not actually a topic of this lecture but a 

very good book of it (and many other numerical methods) is W.H. 

Press et al. Numerical Recipes. In multidimensional minimization 

it is important to find good minimization directions in the 

multidimensional space. In given minimization direction a simple 

1-D minimization is performed. In 1-D minimization we need few 

energy (and force) calculations to locate a minimum. Most of the 



algorithms are based on the assumption that near a minimum the 

energy is of form:   

𝐸(𝑥) ≈ 𝑐 +
1

2
 𝑥 ∙ 𝐴 ∙ 𝑥 

 

The simplest methods is the Steepest Decent. In this method one 

start from point x0 and the minimization direction is taken from 

−∇𝐸(𝑥0).  This will lead to a very inefficient method. Typically, 

there will be a large amount of minimization directions.  

 

 

 



A better method is the Conjugate Gradient method where 

ortohogonal optimization directions are constructed. (See the 

details from Numerical Recipes, or web.) Another type of methods 

are so called quasi-Newton methods where an iterative 

approximation of the inverse of matrix A is build, lim
𝑛→ ∞

𝐻𝑛 = 𝐴−1. A 

popular version of a quasi-Newton method is the BFGS method. 

(Broyden-Fletcher-Goldfarb-Shannon, see details from Numerical 

Recipes). At the moment the BFGS is one of the most used method. 

Note that the matrix A can be very big. It contain ca. (3N-6)2/2 

elements (it is symmetric). So for 200 atom molecule there is 

ca. 180 000 values so direct computation of A is very time 

consuming. 

 

Figure: 2D map of a potential 



 

The search of global minimum is very difficult. In general, the 

parameter space can be divided to volumes (in N-dimensions) 

which each corresponds to one minimum (see a figure above). From 

any point in this volume minimization will converge to minimum 

{Rn}. This volume is called an attractor of minimum {Rn}. In 

global optimization we try to find the best minimum. Usually 

there are so many minima that any direct search method is not 

possible. All effective global minimization algorithm use some 

randomness.  

Genetic algorithm will present the system with binary “DNA” and 

it will make a new position by combining different position of 

old systems by choosing each new gene from either of the 

“parents”. There is also some randomness of the new genes, 

“mutations”. The choice of the parent gene is random and the new 

offspring is accepted if it has lower energy than the parents 

have. The details of the algorithm are rather complex.  

https://en.wikipedia.org/wiki/Genetic_algorithm   

The genetic algorithm is ideal for discrete problems but 

molecules have continuous variables. Usually the global 

optimization methods are accompanied with local optimization.  

Another method is Simulated Annealing where Monte Carlo (or 

Molecular Dynamics) simulation is done and the temperature of 

the systems is slowly reduced. This is not very efficient 

method. 

In chemistry we usually know the general structure of the 

molecule of interest.  

Problem: how many molecules can be made from 6 C and 6 H’s. (I 

do not know the correct answer.) Most of them are strange. What 

is very likely the lowest one?  

 

Frequencies 

 



In addition, the vibrational frequencies can be computed from 

the atomic total energy. The vibrations are computed as the 

second derivative of the total energy 

  𝐴𝐼𝐽 =
𝜕2𝐸𝑡𝑜𝑡

𝑒𝑙

𝜕𝑅𝐼𝜕𝑅𝐽
 

or using the finite difference method. From this matrix we can 

find the vibrational normal coordinates and the vibrational 

eigenvalues. The computations are rather easy, essentially we 

need to find the eigenvalues and vectors of matrix A. (We will 

come back to them later). The most demanding part is the 

calculation of the second derivative since the matrix A can be 

rather large.  

The second derivatives are also useful for 1) determining that a 

found minimum is a true minimum (then all the frequencies are 

positive) and 2) computing the vibrational entropy of the 

system.  

  

Transition states 

 



In fact any property related to molecules structure can be 

computed from the atomic total 

energy. One very interesting 

property is the chemical reactivity. 

Reactions equilibrium constant and 

reaction rate can be computed (but 

they are not very accurate). The 

reactants will have a certain lowest 

energy geometry, the transition 

state will have an other geometry 

and the products will again have 

some geometry. These geometries can 

be found and then the Reactant, 

Transition state and Product 

energies can be computed. The 

picture in left is very simple. In 

general case the problem has many 

dimensions, namely 3N-6 (for non-

linear molecules), but there is 

always one transition state between 

two near by minima. If the minimas are “far appart” there can be 

several transition states between them. See also Figure 2D Map. 

This illustrates the situation in 2D. The real situation is 

multidimensional and not drawable.   

Unfortunately the relevant energy in chemical reactions is not 

the total energy but the Free energy, F = H – TS, so we need to 

estimate the entropy. For gas phase molecules and on surfaces 

this is easy (we need the molecular vibrations) but it is not 

easy in liquids.  

The transition state search algorithms are more complex than 

minimization algorithms. There are several methods and here we 

consentrate to the NEB (Nudged Elastic Band) method. It is 

important to remember that points in these pictures always 

correspond to some real geometry of the atoms. In the NEB method 

a reaction path can be drawn as follows. In all practical 

calculations the energy is the electrons total energy, NOT the 

Free energy.   

 



   

 

From: http://www.quantumwise.com/documents/manuals/ATK-2008.10/chap.relax.html 

 

We can look a simple reaction like: C2H6 -> C2H4 + H2 

 

 

We can now construct the initial reaction path as linear 

interpolation of the reactant and product coordinates:  

RI(i) = [(NNeb-i)*RI(react)+i*RI(prod)]/NNeb 

(The straight dotted line in the figure above). NNeb is typically 

around 10. In the NEB methods there is a spring between the 

points RI: k(RI – RI+1)2. Now we need to minimize the energy of 

the whole path (the end-points are fixed). In ideal case the 

original path slide to the correct path (solid line in the 

picture above). For a stable algorithm only the perpendicular 

force of the energy and the parallel force of the spring are 

used. (The perpendicular and parallel forces are with respect of 

the NEB path.) See the added NEB document. (http://www.openmx-

square.org/tech_notes/NEB.pdf) 

http://www.quantumwise.com/documents/manuals/ATK-2008.10/chap.relax.html


The NEB method do not find directly a good estimation of the 

transition state but a simple polynomial interpolation gives 

reasonable results. NEB has also a tendency to pack the points 

to either ends of the system. This will minimize the NEB path 

energy. 

 

 

 

 

There are also several improved versions of NEB, like Climbing-

Image-NEB. Also NEB can be restarted from any points near the 

maximum.  

 



In general, it is not easy to find the transition state. Note 

also that the NEB will find the maxima of the atomic total 

energy, not the free energy, so the entropy need to be estimated 

separately. The NEB calculation are time consuming since every 

point in the path is a quantum mechanical calculation. 

 

Source: http://theochem.org/CompChem11f/NEBandQuantumHTST.pdf 

 

The NEB is one of the most popular TS search algorithm but not 

the only one. It is not easy to use and it is limited to energy 

(not free energy).  

 

Potential energy surface  

 

The most general approach to the atomic total energy is the 

potential energy surface (PES). In most general case it is the 

same as the atomic total energy. Because the total energy is so 

high dimensional this approach is impractical. Even in very 

simple case of reactions of two diatomic molecules (or a 

diatomic molecule approaching to rigid surface) the coordinate 

space is 6 dimensional. If one uses 10 points in each dimension 

http://theochem.org/CompChem11f/NEBandQuantumHTST.pdf


it takes 106 calculations to map this surface. This is just 

doable but not for larger systems. The full PES is almost never 

used but some parts of it can be useful. A rather common 

approach is so called elbow plot, where a diatomic molecule is 

approaching a surface horizontally (it can also tilt and rotate 

if liked). In the elbow plot the height and atom distance are 

plotted in 2-D. Several elbow plots can be made on different 

location on the surface. 

  

 

 

 

 

 

 

Above one see that the EB plot are rather different. In general 

a well-chosen 2-D plot of the PES are very useful tool to 



understand the molecular interactions or reactions. (Even we 

would have a high dimensional PES we have difficulties to 

visualize it beyond 3-D. 

 

To summarize: the atomic total energy is a very useful quantity. 

From it, many chemical properties, like molecules structure, 

vibrational modes and energies, estimation of reaction barriers, 

etc., can be computed. Its main limitation is that often we 

would need the free energy instead of total energy. Even the 

free energy can be computed within the harmonic approximation.  

 


