Computational Chemistry I

Text book Cramer: Essentials of Quantum Chemistry, Wiley (2 ed.)

Chapter 2. Hartree-Fock (Cramer: chapter 6)

The molecular (non-relativistic) Hamiltonian for the electrons
is known.

2 Z 2 2 Z Z e2
|- lviy L85 f 3 &% (2.1)
T~ 2m, T Ang [n-R | 3 4775on 1476 |R —R, |

In this we need to know the atomic type (Z:1) and positions (Ri).
The positions do not need to be exact but they need to be
reasonable. The molecular geometry can be optimized later. The
exact wave functions cannot be solved and thus some
approximations are needed. We also utilize the variational
principle to find the best trial wave functions from the chosen
function class.

Variational principle: The closer to the true wave function the

trial function is the lower the energy expectation (V|H|¥W)/(¥|¥)

value is. For exact wave functions this is

_[‘P(rl...rN)H‘P(rl...rN yd®r..d’r,
- j‘{’(rl...rN)\P(rl...rN)dSr...d3rN

E=(H (2.2)

but the more interesting case is when this equation is used for

a wave function like functions qj. The 7 can be almost any
reasonable function. The energy is now
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we can show that E 2 E. The = sign appears only when §}=‘P.



Proof:

We can expand ¥ = Y,a,¥, where an::CPPHJ (we do not know W'’s

but it does not matter, alsou, = {(Ynl¥.), €|¥.) =H|¥,)) when this
is inserted to (2.3) we get
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This equation is always larger or equal than g = E.

This is a very powerful statement. It can be used to approximate
Y with single Slater determinant (SD) or many SD’s (the CI

methods) or to find parameters of ¥W. We can determine the
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quality of the trial wave function ¥ by comparing the energy E.
The lower energy the better wave functions and thus better
results.

Hartree-Fock equations

The simplest anti-symmetric product function is the Slater
determinant

Y(n,n,.. = ﬁdet | ()@, (). (1) |

Where a ¢(r) is an atomic type orbital. We “ignore” here the
spin or more precisely, we assume that all states are doubly
occupied so the number of electrons are 2N! The ¢i(r)’'s are
orthonormal,<¢J¢y)=.f¢A})¢j00d3r::6U. We can look the kinetic
energy part
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The € i1s a shorthand of the determinant coefficient, it is either
1 or -1. The capital indexes I and J denote all permutations of
numbers 1,2,..N. (Example: N=2, I = 12,21, €12=1, e1=-1). dt will
contain all the dr’s. The final expression is rather simple.

As an example this can be done for two states. The orthogonality
is important.
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The ri1 can be replaced with r.

The Coulomb part is more complex,

e2

fq’ (ryr2.,rN) P (ryr2..TN) dt
|7y =72
f(P1(7"1)<P2(7”2)--<PN(TN)(P1(T1)<P2(7"2) PN(rN) dt
|7y =72

T 4me

€€
4-7T8N'ZI] I=j
The last integral is delicate since the ri: and r»2 are twice in
the product wave functions and the Slater determinant will have
all the permutations of the orbitals. This lead to two
contributions.
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The J is simple. It is the Coulomb interaction of the electron
density, p()=X,l@,(")|?. The K is more complex it is the Fock (or
exchange) term, which arises from the fact that the electrons
can be exchanged.

These are the Hartree-Fock equations. They are still impractical
since to manipulation of the wave functions requires some
practical numerical representation of them.

We can write the wave functions using some basis functions ¢ (r)
which are simple known functions which contain adjustable
parameters. Typically, the basis functions are centered on
atoms, & (r-R).
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Now we can insert this to the Slater determinant and the basis
functions to variation equation (or to Schrdédinger equation).
After a bit of math we can write the Roothaan-Hall (R-H)
equation

FC =&SC

Where C contain all the molecular coefficients, F is the Fock
matrix and S is the overlap matrix. The Fock matrix is
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Snm = ffn(r)fm(r)dT

These are quite complex equations since the solution of the R-H
equation is hidden to the coefficients J and K. Also, the
integrals (nm|kl) contain 4 functions (and they are 6
dimensional). The J can be simplified but K not. If there is M
basis functions the computations scale as M!. These together are
the Hartree-Fock (HF) equations. They cannot be solved directly.
One need to make a guess of C(® and solve K©® , JO and F(
matrixes with this guess. Then the R-H equation can be solved
and a new set of coefficients C®) can be solved. Usually one
have to adjust the new C’s a bit but this self-consistent loop
usually converges quite well (at least if there is a large HOMO-
LUMO gap) .
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A self consistency loop

Basis functions



The next issue i1s the basis functions, {(r). There are several
possibilities but the most natural basis functions would be the
Slater functions. They are very close to the solutions of the
hydrogen atoms.

$i(r) = Py (r)exp(=xr)Yim (6, ¢)

The Pn(r) is some polynomial which is similar, but not identical,
to the hydrogen atom polynomials and Yim are the spherical
harmonic functions. These atomic type functions are not very
practical since the J and especially the K integrals become
tedious with them. The optimized Slater functions are still
important because other local basis functions have been built
using them. The J and K matrixes can be solved numerically and
at least one quantum chemistry (DFT) code ADF uses Slater basis.
One the other hand Gaussian functions are more convenient as
basis functions.

§e(r) = Pa(r)exp(—ar*)Yim (6, ¢)

With Gaussians the J and K integrals can be done analytically
but we need more Gaussians to get good accuracy. It is close to
an art to make a good Gaussian basis. The normal strategy is to
use optimized Slater type functions for an atom and then use
several Gaussians (typically around 6) to present the Salter
functions. Note that it is difficult to get the orbitals to
match at origin and at far from the atom.
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Below is the rzﬁm(r) orbitals plotted
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Even an atom might be well described with few Slater functions
(the minimal basis set) a reliable description of molecules
needs larger basis. Typically higher angular momentums than the



valence electrons have are needed, e.q. d-orbital for C, O, N
etc. and p-orbitals for H. We need two (or more) exponents since
in the molecule the wave functions decay from the nucleus is not
symmetric.

For example the optimal zeta for hydrogen atom is =1 but for H;
it is 1.19. In general we need a basis that will describe the
atom in all bonding geometries and it will be impractical
(difficult and time consuming) to develop an individual basis
for each problem.

Polarization functions: basis functions with higher angular
momentum

Double-zeta (DZ), triple-zeta (TZ) functions: basis
functions with different exponents

Diffuse functions: very broad gaussians, needed for inter-
molecular interactions.

The naming convention is rather messy but the modern basis
functions are usually named with zeta-functions (DZ,TZ, etc).
Take a look of the Orca manual for further details.

cc-pVTZ Dunning correlation consistent polarized triple zeta
cc-(p)VTZ Same but no polarization on hydrogen
Aug-cc-pVTZ Same but including diffuse functions

Historically the first basis set’s have been fitted to HF theory
but almost all calculations include the correlation so it is
better to tune the basis to correlated calculations. The cc-
basis above takes the correlation into account.

Extrapolation

As it is tedious to do calculations with several basis functions
most of the quantum chemical codes include some automatic



extrapolation methods. Usually the extrapolation methods that
goes beyond TZ are very reliable.

Automatic basis set extrapolation

Extrapolate(n/m,bas) Extrapolate with basis family bas’ (bas=cc,aug-cc ,ano, saug-ano, aug-ano;
if omitted ‘cc--pVNZ is used) and cardinal Numbers n,m (n<m=2,3,4,5). E.g. Extrapolate(2/3,cc)
extrapolates the SCF, MP2 and MDCI energies to the basis set limit

Extrapolate(n,basis) Calculate the first n---energies for member of the basis set family basis,
e.g.Extrapolate(3) is doing calculations with cc--pVDZ, cc--pVTZ and cc--pVQZ

The HF theory and the basis functions will limit the accuracy of
the calculations. If the basis is very good and in practice, do
not cause any noticeable error to the calculations the results
are referred to be at the HF limit. With modern computers and
rather small molecules it not difficult to get to the HF limit.
But even then the results are not very good since the HF itself
is not very accurate. Well, some quantities, like bond
distances, are good with HF but for example the binding energies
are definitely not.

TABLE 16.2
Homolytic Bond Dissociation Energies (kJ/mol)

Molecule (bond) Hartree-Fock Limit Experiment A

Ethane (H,C—CH,) 276 406 —130
Methylamine (H,C—NH,) 238 389 —141
Methanol (H,C—OH) 243 410 —167
Methy] fluoride (H,C—F) 289 477 — 188
Hydrazine (H,N—NH,) 138 289 =15}
Hydrogen peroxide (HO—OH) —8 230 —238
Fluorine (F—F) —163 184 —347

Copyright @ 2008 Pearson Education. Inc., publishing as Benjamin Cummings

Note that even F» has negative binding energy (the two F atoms
are more stable than the molecule) it still have a local
minimum.



The geometries are good but most bonds are a bit too short
(about 1 %).
TABLE 16.5

Structures of One-Heavy-Atom Hydrides
(bond distances, A; bond angles, °)

Copyright @ 2006 Pearson Inc., as

Even the absolute binding energies are far from good often the
relative energies are quite good.

TABLE 16.3
Relative Energies of Structural Isomers (kJ/mol)

Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Also the vibrational frequencies are reasonable but the error
can be more than 10 %. The HF overestimates the frequencies and



often computed frequencies are scaled by a factor that is around
0.9. In general, the frequencies are difficult quantities to
compute since they are based of very small energy differences.
The vibrations are computed as the second derivative of the
total energy.

TABLE 16.7
Symmetric Stretching Frequencies in Diatomic
and Small Polyatomic Molecules (cm_l)

Molecule Hartree-Fock Limit Experiment A
Lithium fluoride 927 914 13
Fluorine 1224 923 301
Lithium hydride 1429 1406 23
Carbon monoxide 2431 2170 261
Nitrogen 2734 2360 374
Methane 3149 3137 12
Ammonia 3697 3506 193
Water 4142 3832 310
Hydrogen fluoride 4490 4139 351
Hydrogen 4589 4401 188

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Spin

Everything above was written for doubly occupied orbitals. It is
easy to take the spin into account. We do not go to the details
but the cases the total spin is not =0 one should use so called
Unrestricted HF method, UHF. In principle, any spin value can be
computed. This is important for magnetic systems, like Fe.
Usually the spin value need to be determined before the
calculations.

Summary: (U)HF is the basis of all traditional quantum chemical
methods. HF is not considered to be very accurate and in any
serious quantum chemical calculations some “post HF” should be
used.



