
 

 

Computational Chemistry I 

Text book   Cramer: Essentials of Quantum Chemistry, Wiley (2 ed.) 

Chapter 4. Electronic properties (Cramer: chapter 9) 
 

We have now some kind of wave functions and total energy of our 

system. What can we learn from them? As said in the first 

chapter the atomic total energy is very useful for many chemical 

properties. In this chapter we focus on the electronic 

properties which can be computer from the wave functions. One of 

the simplest quantities is the electron density 

𝜌(𝑟) = ∫ ∫ Ψ∗(𝑟, 𝑟2. . , 𝑟𝑁)Ψ(𝑟, 𝑟2. . , 𝑟𝑁) 𝑑𝑟2. . 𝑑𝑟𝑁  

Note that the integral is over the coordinated r2..rN. In the 

case of HF and DFT the 𝜌(𝑟) =  ∑ |𝜑𝑛(𝑟)|
2

𝑛 . Very often the dipole and 

higher moments of the molecule are interesting. The most general 

moment is  

〈𝑥𝑛𝑦𝑚𝑧𝑘〉 = ∑ 𝑍𝑖𝑥𝑖
𝑛𝑦𝑖

𝑚𝑧𝑖
𝑘

𝑖 𝑎𝑡𝑜𝑚𝑠

+ ∑ ∫ Ψ∗(𝑟1, 𝑟2. . , 𝑟𝑁)𝑥𝑗
𝑛𝑦𝑗

𝑚𝑧𝑗
𝑘Ψ(𝑟1, 𝑟2. . , 𝑟𝑁) 𝑑𝑟1. . 𝑑𝑟𝑁

𝑗 𝑒𝑙𝑒𝑐

 

Again form DFT and HF 

〈𝑥𝑛𝑦𝑚𝑧𝑘〉 = ∑ 𝑍𝑖𝑥𝑖
𝑛𝑦𝑖

𝑚𝑧𝑖
𝑘

𝑖 𝑎𝑡𝑜𝑚𝑠

+ ∑ ∫ 𝜑𝑛
(𝑟)𝑥𝑗

𝑛𝑦𝑗
𝑚𝑧𝑗

𝑘φ𝑛
(𝑟) 𝑑𝑟

𝑛,𝑗 𝑒𝑙𝑒𝑐

 

The dipole moment is <>=<r> or 〈𝜇〉 = √〈𝑥〉2 + 〈𝑦〉2 + 〈𝑧〉2. On average 

the DFT models will produce good dipole moments. The higher 

moments are also easy to compute but one need to remember that 

they depend on the origin of the coordinate system. This is 

typically the centre of mass of the molecule.  

 

A good database for comparing the experimental and computer data 

can be found from:  



 

 

 

http://cccbdb.nist.gov/compdipole2x.asp 

 

Remember that the dipole moment can be computed for an arbitrary 

molecular geometry. This is useful if we are interested to IR 

vibrational intensities. The IR intensity will depend on the 

change of the dipole moment in the molecular vibration. Thus the 

difference in dipole moment can be computed with  

∆𝜇 = 𝜇(𝑅0) − 𝜇(𝑅0 + 𝛿𝑉𝑖)   where Vi is the atomic displacement of the 

i:th vibrational mode.   

  

Total electrostatic potential 

 

One quantity that can be computed is the total electrostatic 

potential 

𝑉𝑒𝑙(𝑟) = ∑
𝑍𝐼

|𝑟 − 𝑅𝐼|
𝐼

− ∫
𝜌(𝑟1)

|𝑟 − 𝑟1|
𝑑𝑟1     

The electrostatic potential is useful for analyzing the charge 

distribution of the molecules.   

 

Point charges  

 

In chemistry it would be interesting to know the charge of each 

atom. Even this sounds simple it is not. The true quantity is 

the electron density and there is no unique (correct) way to 

determine the atomic charge.  

One type of charge definition is based on the basis functions,  

𝜑𝑛(𝑟) =  ∑ 𝑐𝑛,𝑚𝜉𝑚(𝑟)𝑚  now we can assign the basis functions to 

each atom. We use notation m(I) meaning that functions m are 

centered to atom I. Now the total amount of electrons is N 

http://cccbdb.nist.gov/compdipole2x.asp


 

 

𝑁 =  ∑ ∫|𝜑𝑛(𝑟)|2

𝑛 𝑒𝑙𝑒𝑐

𝑑3𝑟 =  ∑ ∑ ∫ 𝑐𝑛,𝑚𝑐𝑛,𝑙𝜉𝑚(𝑟)𝜉𝑙(𝑟)

𝑚,𝑙𝑛 𝑒𝑙𝑒𝑐

𝑑3𝑟  

 

𝑁 = ∑ (∑ 𝑐𝑛,𝑚(𝐼)
2+ ∑ 𝑆𝑚(𝐼),𝑙(𝐽)

𝐽≠𝐼

𝑐𝑛,𝑚(𝐼)𝑐𝑛,𝑙(𝐽)

𝐼

)

𝑛 𝑒𝑙𝑒𝑐

 

The term in parenthesis for each atom I can be interpreted as an 

atomic charge. This is so called Mulliken charge. It is very 

easy to compute since all needed information in the quantum 

chemical calculations. Unfortunately it has strong basis 

function dependence (meaning that different basis function will 

give very different charges). Also the overlap contribution is 

odd.  

A better way to compute the basis function based charge is to 

use a method proposed by Löwdin where an othonormal basis is 

used.   

𝜗𝑛(𝑟) =  ∑ 𝑆𝑛𝑚
−1/2

𝜉𝑚(𝑟)

𝑚

 

Now  

𝜑𝑛(𝑟) =  ∑ 𝑎𝑛,𝑚𝜗𝑚(𝑟) =

𝑚

∑ 𝑐𝑛,𝑚𝑆𝑛𝑚
1/2

𝜗𝑚(𝑟)

𝑛𝑚

 

The Löwdin chages are much better than the Mulliken ones. 

Similar but even more realistic method is the Natural Population 

Analysis (NPA). 

 

Bader and similar charges  

 

A completely different approach to determine the charge is the 

Bader method. In the Bader method the space is divided to parts 

and each atom has a relevant volume ΩI. The charge is defined as 

a simple integral  



 

 

 𝑞𝐼 = 𝑍𝐼 +  ∫ 𝜌(𝑟)𝑑𝑟
Ω𝐼

 

 

Unfortunately the integration areas are complex. Bader have one 

definition of the integration volumes but other volumes, like 

Voronoy cells, can be used. The Bader analysis is usually done 

with separate program. 

 

   

 

The charges can also be determined from the electrostatic 

potential. We can find the atomic charges that reproduced best 

the total el. potential.    

𝑉𝑒𝑙(𝑟) = ∑
𝑍𝐼

|𝑟 − 𝑅𝐼|
𝐼

− ∫
𝜌(𝑟1)

|𝑟 − 𝑟1|
𝑑𝑟1 =  ∑

𝑞𝐼

|𝑟 − 𝑅𝐼|
𝐼

    

These EPS charges are very useful for empirical modelling.  

 

Polarization 

 



 

 

If any molecule is in external electric filed (or next to other 

molecules) it’s charge distribution will change. We can define 

polarization as  

𝛼𝑖𝑗 =
𝜕𝜇𝑖

𝜕𝐸𝑗
 

Where µ is the dipole moment and E is the electric field. The 

polarization is useful to understand the “rigidty” of the 

electrons and also the Raman intensities are based on the change 

of polarization in the vibrational mode. (In Orca the Raman 

analysis require numerical frequency calculation, NumFreq.) 

The polarization can be significant. In the case of water, in 

gas phase the dipole moment is 1.85 D and in liquid water around 

3.0 D. The increase is due to the polarization.  

The polarization can be computer with elprop keyword.  

Also the higher order polarization terms can be defined  

𝜇 = 𝜇0 + 𝐸𝑖

𝜕𝜇

𝜕𝐸𝑖
+

1

2
𝐸𝑖𝐸𝑗

𝜕2𝜇

𝜕𝐸𝑖𝜕𝐸𝑗
= 𝐸𝑖𝛼𝑖 +

1

2
𝐸𝑖𝐸𝑗𝛽𝑖𝑗 + ⋯ 

Here  is hyperpolarization. (Orca do not calculate 

hyperpolarization.) 

 

Vibrations 

 

As mentioned in the first chapter the molecular vibrations can 

be calculated from the second derivative,  

𝐴𝐼𝐽 =
𝜕2𝐸𝑡𝑜𝑡

𝑒𝑙

𝜕𝑅𝐼𝜕𝑅𝐽
  

Often the second derivative can be computed analytically, but 

with more complex methods numerical second derivative has to be 

used. Once the A has been computed it can be used to solve the 

vibrational eigenvalues and –vectors.  



 

 

(− ∑
1

2𝑚𝑖

𝑑2

𝑑𝑋𝑖
2 

𝑖

+ ∑ 𝑋𝑖

𝑖𝑗

𝐴𝑋𝑗) Φ(X) = 𝐸Φ(𝑋) 

One need to choose mass weighted coordinates 𝑄𝑖 = √𝑚𝑖𝑋𝑖 and 𝐵𝑖𝑗 =

√𝑚𝑖𝑚𝑗 𝐴𝑖𝑗  

(− ∑
1

2

𝑑2

𝑑𝑄𝑖
2 

𝑖

+ ∑ 𝑄𝑖

𝑖𝑗

𝐵𝑄𝑗) Φ(Q) = 𝐸Φ(𝑄) 

The vibrational modes (Qi) are eigenvectors of the matrix B.  

In classical mechanics the vibrational problem is easy. We can 

construct system of atoms connected with harmonic springs. We 

can take a water molecule as an example. It has 3 vibrational 

modes and we can build the molecules with two OH bonds (with 

force constant k1) and one H-O-H bending bond (with force 

constant k2). This sounds reasonable but in reality stretching 

one OH bond has small effect to the other OH bond (coupling 

constant k11). We can write a matrix equation of  

𝑀�̈� = (

𝑏1 𝑏11 𝑏12

𝑏11 𝑏1 𝑏12

𝑏12 𝑏11 𝑏2

) 𝑥   

 

Where the b’s are the proper force constants in some coordinate 

system. M is a matrix containing the molecular masses (it depend 

on the coordinate system). Note usually this coordinate system 

is cartesian. We can diagonalize the B matrix and we find a new 

orthogonal coordinate systems ξ=ξ(x)  

�̃�𝜉̈ = (

𝜅1 0 0
0 𝜅2 0
0 0 𝜅3

) 𝜉   

We know how the vibrational coordinate system depend of the old 

coordinates (x) and the values  are the vibrational eigenvalues. 

Also �̃� is diagonal but it depend on the atoms masses and the 

coordinate transform.  



 

 

 

 

IR  intensities 

 

First, we need a term that describe the interaction of light and 

the molecule. The light is described with an time dependent 

electric field E(t)=E0 sin(t). In the first approximation the 

electric field is coupled to the dipole moment,tof the 

molecule (there are higher order term like the quadrupole moment 

but we ignore them here.) So the coupling term is (both  and E 

are vectors) 

 

H(t)=-t∙E(t) 

 

The main result is the transition dipole rule:  

 

dxxx mnnm )(ˆ)(*         (2.1)  

In this equation the φn is the wave functions of the starting 

state and φm is the wave functions of the end state. Now we can 

compute any transition probability when the wave functions are 

known. (Even a good approximation of the wf will do.)  

 

Let us apply this to a harmonic oscillator. The wave function is 

Hn(x)exp(-x2/2) but now we need to think carefully what the x 

means. It is the oscillation coordinate. In the case of two atom 

molecule it is the distance between the atoms.   



 

 

 

 

   

Also x, here xis x component of the dipole moment, we can 

choose coordinates such that the dipole vector is in x 

direction. 

 

Now the dipole moment is  

 

𝜇(𝑡) = 𝜇0 +  
𝜕𝜇

𝜕𝑥
𝑥 

 

The 0 is the dipole moment at equilibrium distance and the 

derivative tells the change of dipole moment in the vibration. 

When this is inserted to (2.1) we get  

 

...)()()/()()( *

0

*   dxxxxdxddxxx mnmnnm    

 

The first term is 0 when n ≠ m because the wave functions are 

orthogonal. The case where n=m is not interesting since nothing 

happens. The next term is the key term. It shows that the 

intensity will depend on the change of dipole moment in the 

vibration.  

Raman intensities 

 

The electric field is time dependent E(t)= E0 sin 2t. This  

external electric field will pull the electrons and ions on 

different directions and the dipole moment of the molecule will 



 

 

change: 𝜇(𝑡) =  𝜇0 + 𝛼 ∙ 𝐸(𝑡) here the  is the polarization of the 

molecule. Now also this change of the dipole moment with respect 

of the vibration can be measured.  

𝛼(𝑡) = 𝛼0 +  
𝜕𝛼

𝜕𝑥
𝑥 

...)()()/(... *   dxxxxdxdE mnnm   

 

Anharmonic effects  

 

The anharmonic potential can be taken into account by fitting 

the scanned potential to the Morse potential 

𝑉(𝑟) = 𝐷𝑒[(1 − exp(−𝑎(𝑟 − 𝑟0)))2 − 1] = 𝐷𝑒[exp(−2𝑎(𝑟 − 𝑟0)) − 2exp (−𝑎(𝑟 − 𝑟0))] 

Where D is the dissociation energy. 

 

The energies of the Morse potential are 



 

 

𝐸𝑛 =  ħ𝜔 (𝑛 +
1

2
) −

[ħ𝜔 (𝑛 +
1
2)]

2

 

4𝐷
= ħ𝜔 (𝑛 +

1

2
) − ħ𝜔𝜒 (𝑛 +

1

2
) 2 

The Morse potential fit can be done to all of the vibrational 

modes.  

Orca will have an automatic methods for harmonic analysis, VPT2. 

So it should be used for anharmonic analysis for larger molecule 

than dimers. (see the manual).  

 

 

 

 


