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Chapter 7. Hybrid Quantum/Classical models (Cramer: 

chapter 13) 
 

Last let us look in general terms how to combine the quantum and 

empirical modelling. Due to the Born-Oppenheimer approximation 

in QM system the atoms are treated classically when the electron 

wave functions are computed. This makes the QM/MM calculations 

“easy”, one can treat all the atoms are classical ones.  

 

 

  

 

 

 

 

 

We have good understanding of the QM part. The MM part will be 

discussed in details at the second part of the course. Here we 

need to know that the MM atoms have effective (non-polarizable) 

charge, qI, Lennart-Jones (L-J) potential and some internal 

potential which include bond, angle and torsional potentials. 

The L-J potential is simple (it is atom centered and it has two 

parameter,  and ) 
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Different  and  are given for each atom type  and (Note 

there can be several different C, O etc. atoms.). For mixed atom 

type interactions mixing rules are used:  

𝜀𝑖𝑗 = √𝜀𝑖𝜀𝑗            𝜎𝑖𝑗 =
1

2
(𝜎𝑖+𝜎𝑗)              

When we know the MM atom positions we know the electrostatic 

potentials they will case (in the QM region) 

𝑉𝑒𝑙,𝑀𝑀→𝑄𝑀(𝑟) = ∑
𝑞𝐼

|𝑟 − 𝑅𝑀𝑀,𝐼|
𝐼

 

Then the total atomic potential is 

𝑉𝑒𝑙(𝑟) = − ∑
𝑍𝐼

|𝑟 − 𝑅𝑄𝑀,𝐼|
𝐼

+ ∑
𝑞𝐼

|𝑟 − 𝑅𝑀𝑀,𝐼|
𝐼

 

Now one can solve QM electronic problem with this potential. The 

situation with the L-J interactions is a bit more difficult. It 

is not easy to get the L-J parameters from the QM calculations. 

Sometimes the L-J MM field is ignored in the QM region or the MM 

parameter are used to model the MM L-J effect to QM atoms. Note 

inside the QM the L-J parameters are not used.   

QM/MM interphase 

 

In the QM/MM modelling the QM/MM interphase require own model. 

The MM part will see the QM electrostatic potential but it will 

be very time consuming to compute the Vel(r) at every MM atom 

position. One solution is to use QM derived charges for the 

atoms. Then  

𝑉𝑒𝑙,𝑄𝑀→𝑀𝑀(𝑅𝑀𝑀,𝐽) = ∑
𝑞𝐼

𝑄𝑀

|𝑅𝑀𝑀,𝐽 − 𝑅𝑄𝑀,𝐼|
𝐼

 

The L-J is usually done with MM parameters for the whole system 

so MM system sees the QM atoms with empirical L-J parameters.   

If the QM molecule do not form covalent bond with the MM region 

the situation is rather easy. The models above works quite well, 

but if there is a bond between the regions it should be a single 

bond. The dangling single bond in the QM part can be terminated 



with a hydrogen, methyl or a simple model potential. (The 

terminating group is not included to rest of the models. 

Confusing isn’t.) One also need to extend the MM potentials, 

like torsional potentials, to the QM region.  

Another complication is the polarization. In QM region it is 

naturally taken into account but in the MM region the models are 

usually non-polarizable. This is not consistent and it would be 

good to have polarizable model also in the MM part. 

Unfortunately, the polarizable MM models are rare. 

As one can see from the Orca manual, the QM/MM modelling is not 

easy. One need to have understanding from both modelling fields. 

On the other hand, now many of the most used modelling programs, 

like Orca and GROMACS support QM/MM models. Thus is it become 

easier to do them and the QM/MM approach provides a new and more 

realistic way to model the solvation. Obviously, the QM/MM is 

much more general than the continuum solvation models. It takes 

into account the molecular structure of the “solvent”. It can 

handle hydrogen bonds, non-homogenous solvent, dynamics of the 

solvent, etc. 

 

Ab initio molecular dynamics 

 

One can also include molecular dynamics (AIMD) to quantum 

chemistry. It is very easy since we can compute the forces and 

the BO approximation allow classical treatment of the atoms. Now 

the dynamics can be described with Newton’s equation 

𝐹 = 𝑚𝑎 

With given atom configuration we can compute the forces and 

update the atomic positions with some algorithm. One of the 

simplest ones is the Verlet algorithm 

𝑅𝐼(𝑡 + ∆𝑡) = 2𝑅𝐼(𝑡) − 𝑅𝐼(𝑡 − ∆𝑡) +
𝐹𝐼(𝑡)

𝑚𝐼
∆𝑡2 + 𝑂(∆𝑡4) 

The main point is that the position update have to be done very 

often. The t is very small, typically 1 fs. So to simulate 1 s 

we need 1015 steps! That is not possible but of course, shorter 



simulation times are possible. In AIMD the simulation time 

scales are ca. 100 ps (and up to 1 ns = 1 milj. steps). Note 

that CPU time for an AIMD step is around 10s. Naturally, the 

size of the system affect a lot of the total time scale. In AIMD 

systems of few 100 water molecules can be simulated. (And this 

is hard to improve due to the N3 scaling of the DFT methods.) 

The MD is seldom relevant for a single molecule. The internal 

motion of a small and medium molecules are quite well described 

with vibrations. Cluster of molecules are more interesting but 

not very relevant in chemistry. The most important application 

is liquids and solution effects. The most convenient way to 

model the liquid is to use periodic boundary conditions (PBC).  

 

 

 

 

 

 

 

 

 

 

 

 

 

In periodic boundaries the system is repeated in every 

direction. One need to compute the forces with the PBC but it is 

enough to simulate only one “box”. The PBC works only for 

neutral systems (details in the other part of the course). The 

DFT equations are easy solve with PBC but HF is more difficult. 

Only very recently periodic MP2 and CCSD has been implemented.  
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In general, all simulation techniques, like thermostats, 

barostats, thermodynamical integration etc, that have been 

developed for empirical MD can be used for AIMD.  

 

Applications 

 

Water, water, and water. The most obvious AIMD application is 

water and molecules in water. Almost any small system (up to ca. 

500 waters and solvent of tens of atom) can be simulated.  

Al5OxCl4 AIMD simulations, periodic 17 Å cubic box, 141 D2O molecules. The PBE GGA + 

empirical van der Waals corrections were used. 

 

 

One particularly interesting application is acidity and protons. 

Below is an example of a water molecule bound to Al atom. The 

proton in the water is weakly bond and it can occasionally 

dissociate but it will always come back (within this 

simulation). The simulation time is 40 ps. 



 

 

 

 

 

 

 

 

One can even estimate the pKa from the proton fluctuations. 

In addition, reaction barriers can be estimated using the 

thermodynamic integration method. Here the constraint force 

algorithm has been used.  
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Also some other solvent than water, like methanol, ammonia, can 

be simulated but the computational cost increases rapidly and in 

addition the needed time scales are longer than in water.  

 


