
focus 2

60	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

r e qu ir em en t s and a g i l i t y

Agile Requirements
Engineering Practices:
An Empirical Study

Lan Cao, Old Dominion University

Balasubramaniam Ramesh, Georgia State University

T
he rapidly changing business environment in which most organizations oper-
ate is challenging traditional requirements-engineering (RE) approaches. Soft-
ware development organizations often must deal with requirements that tend
to evolve quickly and become obsolete even before project completion.1 Rapid

changes in competitive threats, stakeholder preferences, development technology, and time-
to-market pressures make prespecified requirements inappropriate.1

Agile methods that seek to address the challenges
in such dynamic contexts have gained much interest
among practitioners and researchers. Many agile
methods advocate the development of code without
waiting for formal requirements analysis and design
phases. (In this article, “requirements engineering”
means the same thing as “requirements analysis,” as
is common in the RE literature.) Based on constant
feedback from the various stakeholders, require-
ments emerge throughout the development process.
Evolving requirements in a time-constrained devel-
opment process cause the RE process for agile soft-
ware development to differ from that for traditional
development.

Few studies report on RE in agile development
(see the related sidebar). Proponents present agile
methods as a panacea for all the ills of software
development, often focusing on the proposed prac-
tices’ possible benefits.2 Critics, on the other hand,
have focused on the challenges that agile practices
might present. In contrast, we’ve been systemati-
cally studying the agile practices that developers ac-
tually follow. Using a qualitative study of 16 organi-

zations, we sought to answer two questions: What
RE practices do agile developers follow? What ben-
efits and challenges do these practices present?

How we conducted the study
Carolyn Seaman argues that software engineer-

ing’s blend of technical and human-behavioral as-
pects lends itself to qualitative study.3 Qualitative
methods let you delve into a problem’s complexity
and develop rich, informative conclusions. For a rel-
atively “uncharted land”4 such as agile RE, a multi-
site qualitative case study approach is appropriate.

To understand how and why agile RE differs
from traditional RE, we collected data from 16
organizations that employ agile approaches. (The
“Study Participant Characteristics” sidebar pro-
vides details on the organizations. To protect their
identities, we use pseudonyms.) These organizations
are in three major US metropolitan areas.

The study had two phases. In the first phase,
we conducted cases studies in 10 organizations
that characterize themselves as involved in agile or
high-speed software development. Although these

An analysis of data
from 16 software
development
organizations
reveals seven agile
RE practices, along
with their benefits
and challenges.

	 January/February 2008 I E E E S o f t w a r e � 61

organizations didn’t explicitly follow any specific
“brand” of agile methods, they followed RE prac-
tices that were similar to those suggested by agile
methods such as Extreme Programming (XP) and
Scrum. In the second phase, we collected data from
six organizations that used XP, Scrum, or both.

The participating organizations represent a rich
mix of fields from healthcare to software develop-
ment and consulting. We collected data through
semistructured interviews, participant observations,
and documentation review. In each organization,
we interviewed a variety of stakeholders, includ-
ing top management, product managers, quality
assurance personnel, software developers, senior
architects, and project managers. We also reviewed
requirements documents such as story cards when
available.

We conducted data analysis and data collection
synergistically, as is common in qualitative research.
Results from preliminary data analysis guided fur-
ther data collection. Although most interviewees fo-
cused on current or recent project experiences, their

responses included information on multiple projects
from previous experience. So, each organization
was the unit of data analysis.

To analyze the data, we used the grounded-
theory method,4 a well-established qualitative-
research method. It lets you develop insights about
a problem under investigation, without prior hypo
theses. This approach is exploratory rather than
confirmatory.

Data analysis involved open, axial, and selective
coding.4 In open coding, we identified groups of
data and labeled them as agile RE practices, agile
RE benefits, or agile RE challenges. We performed
axial coding to uncover relationships among prac-
tices, benefits, and challenges. In selective cod-
ing, we identified larger patterns by systematically
comparing the practices. We conducted additional
interviews to gain clarification on some concepts.
To generate insights from this analysis, we focused
on similarities and differences in agile RE prac-
tices among the 16 organizations. Two coders
separately coded the data, and we compared the

Although critics argue that agile software development
approaches simply repackage established techniques,1 others
have recognized that requirements engineering in an agile
environment is different.2,3 For example, agile methods such
as Extreme Programming (XP) advocate RE throughout the
development life cycle in small, informal stages.4 However,
from a requirements honesty viewpoint, agile development
might negatively affect the requirements principles of pur-
posefulness, appropriateness, and truthfulness.5

In spite of the centrality of effective RE in agile develop-
ment, the agile-RE literature is limited to a few high-visibility
case studies (such as at Microsoft and Netscape)6 and ex-
perience reports.7 Much research has focused on assessing
and improving agile requirements approaches as defined in
popular agile methods such as XP and Scrum. Little is known
about how real agile projects conduct RE. Also, it isn’t clear
whether developers are actually using the practices that agile
methods prescribe.7

Recent studies have identified several problems that could
result from the lack of detailed requirements specifications8
and suggest several approaches to address these prob-
lems.2,9,10 These approaches include using explicit require-
ments negotiation,10 establishing traceability,11 incorporat-
ing aspect-oriented concepts,12 incorporating an explicit RE
phase,8 and using cooperative strategies for RE.13 Some of
these approaches might help mitigate the challenges that our
study identified (see the main article).

References
	 1.	 H. Merisalo-Rantanen, T. Tuunanen, and M. Rossi, “Is Extreme

Programming Just Old Wine in New Bottles: A Comparison of Two
Cases,” J. Database Management, vol. 16, no. 4, 2005, pp. 41–61.

	 2.	 F.E. Paetsch, A. Eberlein, and F. Maurer, “Requirements Engineering
and Agile Software Development,” Proc. 12th IEEE Int’l Workshops En-
abling Technologies: Infrastructure for Collaborative Enterprises (Wetice
03), IEEE CS Press, 2003, p. 308.

	 3.	 A. Sillitti et al., “Managing Uncertainty in Requirements: A Survey
in Documentation-Driven and Agile Companies,” Proc. 11th IEEE Int’l
Symp. Software Metrics (Metrics 05), IEEE Press, 2005, p. 17.

	 4.	 K. Beck et al., “Embracing Change with Extreme Programming,”
Computer, vol. 32, no. 10, 1999, pp. 70–77.

	 5.	 F.A.C. Pinheiro, “Requirements Honesty,” Proc. 2002 Int’l Workshop
Time-Constrained Requirements Eng. (TCRE 02), 2002; www-di.inf.
puc-rio.br/~julio/tcre-site/p3.pdf.

	 6.	 M. Cusumano and D. Yoffie, Competing on Internet Time: Lessons from
Netscape and Its Battle with Microsoft, Touchstone, 2000.

	 7.	 J. Erickson, K. Lyytinen, and K. Siau, “Agile Modeling, Agile Software
Development, and Extreme Programming: The State of Research,” J.
Database Management, vol. 16, no. 4, 2005, pp. 88–99.

	 8.	 J. Nawrocki et al., “Extreme Programming Modified: Embrace Require-
ments Engineering Practices,” Proc. IEEE Joint Int’l Conf. Requirements
Eng. (RE 02), IEEE CS Press, 2002, pp. 303–310.

	 9.	 B. Boehm, “Requirements That Handle Ikiwisi, COTS, and Rapid
Change,” Computer, vol. 33, no. 7, 2000, pp. 99–102.

	10.	 P. Grünbacher and C. Hofer, “Complementing XP with Requirements
Negotiation,” Proc. 3rd Int’l Conf. Extreme Programming and Agile
Processes in Software Eng. (XP 02), Springer, 2002, pp. 105–108.

	 11.	 M. Lee, “Just-in-Time Requirements Analysis—the Engine That Drives
the Planning Game,” Proc. 3rd Int’l Conf. Extreme Programming and
Agile Processes in Software Eng. (XP 02), Springer, 2002, pp. 138–141.

	12.	 J. Araujo and J. C. Ribeiro, “Towards an Aspect-Oriented Agile Re-
quirements Approach,” Proc. 8th Int’l Workshop Principles of Software
Evolution, IEEE Press, 2005, pp. 140–143.

	13.	 O. Jepsen, “Time Constrained Requirement Engineering—the Cooper-
ative Way,” Proc. 2002 Int’l Workshop Time-Constrained Requirements
Eng. (TCRE 02), 2002; www-di.inf.puc-rio.br/~julio/tcre-site/p5.pdf.

Related Work on Requirements Engineering in Agile Development

62	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

results. Differences were resolved after detailed dis-
cussions. We then recoded the data to arrive at a set
of practices common across these organizations.

The agile RE practices and their respective bene-
fits and challenges we present reflect the perceptions
and beliefs of the software developers who partici-
pated in the study.

Agile RE practices
Our study identified seven agile RE practices in

the organizations.

Face-to-face communication over written
specifications

According to the participants, agile RE aims to

Study Participant Characteristics
Organization
pseudonym Industry and products

No. of employees
interviewed Organizational roles represented

Enco Energy and communications.
Offers forecasting tools.

3 VP of operations, project manager, and
software developer

HealthCo Healthcare and utilities.
Offers an online service to help customers select health
insurance and utility services.

6 President & CEO, VP of technology
operations, director of marketing
research, CIO, and developers

Venture Across industries.
Helps brick-and-mortar companies develop a Web presence.

4 Director, chief financial officer, chief
operations officer, and developer

Entertain Film and television industry.
Offers high-tech indexing and search tools online.

4 Project manager, marketing specialist,
senior Web developer, and quality
assurance specialist

HuCap Administration.
Carries out human-resource administration for other
companies online.

7 Project manager, architect, user
interface designer, Web designers,
and Web developers

TravelAssist Transport and tourist industry.
Offers online services.

6 Senior manager, project manager,
quality assurance manager, lead
developers, and Web developers

ManageRisk Across several industries.
Offers insurance online.

3 Human-resources manager, Internet site
manager, and Internet site developer

Transport Transportation and logistics industry.
Offers services online.

6 CIO, senior manager, project manager,
architect, senior developer, and Web
developer

ServeIT Consulting and services.
We studied the part of the firm that offers consulting
services for business-to-business communication.

6 Senior manager, project manager,
quality assurance manager, quality
assurance specialist, and Web developers

HealthInfo Healthcare information systems.
Offers information systems solutions to hospitals,
physicians’ offices, and home healthcare providers.

2 Senior software engineers

SecurityInfo Security software.
Offers software for Internet security.

5 Software engineer, project lead, product
manager, and quality assurance specialist

AgileConsult Software consulting.
Offers consulting services on agile software development.

2 Senior developer and project lead

EbizCo Packaged software development.
Offers e-business connections and transactions.

1 Senior software developer

FinCo Online financial-transaction support.
Offers online payments.

1 Software developer

NetCo Network software consulting.
Offers services on developing network systems
and architectures.

2 General manager and senior software
architect

BankSoft Banking information systems.
Offers software that handles financial transactions.

1 Senior software architect

	 January/February 2008 I E E E S o f t w a r e � 63

effectively transfer ideas from the customer to the
development team, rather than create extensive doc-
umentation. So, their agile RE practice prefers face-
to-face communication over written specifications.

Most organizations shun formal documentation
of specifications. Instead, they use simple techniques
such as user stories to define high-level requirements.
These short, abstract descriptions serve mainly as
anchors for further discussions with customers. The
developers discuss requirements in detail with the
customers before and/or during development.

One exception is BankSoft, a company that de
velops banking-industry software and whose com-
pany policy mandates formal documentation. How-
ever, even for such security-critical applications,
face-to-face communication with the customer
is a primary source of requirements. The project
team meets frequently with the product manager,
who serves as a surrogate customer to discuss the
requirements and alternative solutions. Formal
documentation of requirements doesn’t eliminate
the need for frequent communication, because, as
a BankSoft participant noted, “Everything is am-
biguous; if you give me exactly what the customers
want, they [the customers] are going to say, that’s
neat, [but] I want something different.”

Benefits. All 16 organizations rely extensively on
face-to-face communication between the team
and the customers. The participants reported these
benefits:

Customers can steer the project in unanticipated
directions, especially when their requirements
evolve owing to changes in the environment
or their own understanding of the software
solution.
Informal communication obviates the need for
time-consuming documentation and approval
processes, which are perceived as unnecessary,
especially with evolving requirements.

Challenges. Several participants reported that this
practice’s effectiveness depends heavily on intensive
interaction between customers and developers. For
projects that can’t achieve such high-quality inter-
action, this approach poses risks such as require-
ments that are inadequately developed or, worse
still, wrong.

The effectiveness of communication between the
customer and team depends on several factors, in-
cluding customer availability, consensus among cus-
tomer groups, and trust between the customer and
the developers, especially during the project’s early
stages.

■

■

Many organizations reported that achieving on-
site customer representation is difficult. In most of
the projects we studied, product managers acted as
surrogate customers. However, only two projects
had a full-time, onsite product manager; the others
had only part-time access.

When more than one customer group is in-
volved, with each concerned about different aspects
of the system, achieving consensus or compromise
in the short development cycle is challenging. The
development team must spend extra effort to inte-
grate the requirements through negotiations with
each group. For example, at NetCo, the project
manager forced customers to physically participate
in several meetings to discuss requirements, in order
to achieve consensus.

Customers sometimes find it difficult to under-
stand or trust the agile RE process. Many partici-
pants reported that establishing trust between the
customer and developer, which is essential for agile
RE, can be challenging. Customers familiar with a
traditional development process might not under-
stand or trust the agile RE process, which doesn’t
produce detailed requirements. One NetCo proj-
ect included three customer representatives, but
only one had a positive opinion of agile RE. In this
project, the project manager suggested that the
two customers who didn’t have high confidence in
agile methods weren’t “good” customers in terms
of their ability to provide relevant information and
feedback.

Iterative requirements engineering
In 14 organizations, requirements aren’t pre-

defined; instead, they emerge during development.
High-level RE occurs at the project’s beginning.
During this brief process, the development team
acquires a high-level understanding of the appli-
cation’s critical features. Reasons for commencing
development without spending much time on RE
initially include high requirements volatility, incom-
plete knowledge of the technology used in develop-
ment, and customers who can clearly define the re-
quirements only when they see them (“I’ll know it
when I see it”).

In most organizations, agile RE continues at
each development cycle. At each cycle’s start, the
customer meets with the development team to pro-
vide detailed information on a set of features that
must be implemented. During this process, require-
ments are discussed at a greater level of detail. Also,
RE is often intertwined with design. This activity of-
ten results in a set of fine-grained requirements and
a preliminary design, and sometimes even an imple-
mentation plan, none of which is specified formally.

Customers
sometimes

find it difficult
to understand

or trust
the agile

RE process.

64	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

Benefits. Iterative RE has two reported benefits.
First, it creates a more satisfactory relationship

with the customer. Here’s how a SecurityInfo cus-
tomer compared his experience with agile RE and
traditional RE: “I think the difference for me came
in the quality of the software [and] the stability of
the software. … I think the agile [RE] lent itself to
… a very robust rich implementation of features …
[for] the first time.”

Second, requirements are clearer and more un-
derstandable because of the immediate access to
customers and their involvement in the project when
needed.

The participants suggested that iterative RE
might be appropriate even in stable business envi-
ronments where the changes often come from un-
foreseen technical issues, especially when adopting
new technologies. For example, FinCo used a beta
version of the .NET framework, and the evolving
technology caused several changes to the require-
ments and the system design. In many organiza-
tions, the customers aren’t clear at the outset about
their requirements and are willing to explore the
ways in which the evolving system can help their
business goals. Flexible RE facilitates this joint dis-
covery of potentially interesting solutions.

Challenges. Participants reported three major
challenges.

The first is cost and schedule estimation. Be-
cause none of the organizations follow a formal RE
phase, the initial estimation of project size typically
is based on the known user stories. Many of these
might be discarded, and many more get added dur-
ing development. So, the original estimates must be
adjusted (sometimes quite dramatically) during de-
velopment, as happened with HuCap. Because the
project scope is subject to constant change, creating
accurate cost and schedule estimates for the entire
project is difficult. Obtaining management support
for such projects could be challenging.

The second challenge is minimal documentation.
When a communication breakdown occurs owing
to, for example, personnel turnover, rapid changes
to requirements, unavailability of appropriate cus-
tomer representatives, or the application’s growing
complexity, the lack of documentation might cause
a variety of problems. These include, as one ServIT
participant noted, the “inability to scale the soft-
ware, evolve the application over time, and induct
new members into the development team.”

The third challenge is neglect of nonfunctional
requirements, a major concern with iterative RE
in agile development. Many participants acknowl-
edged that NFRs are often ill defined and ignored

during early development cycles. Customers often
focus on core functionality and ignore NFRs such
as scalability, maintainability, portability, safety, or
performance. One common exception is the focus
on ease of use, especially when the customers are
intensely involved in providing constant feedback
on the evolving system. Many participants, such
as ServeIT and TravelAssist, suggested that the ten-
dency to ignore critical issues such as security and
performance early in the process results in major is-
sues as the system matures and becomes ready for
larger-scale deployment.

Requirement prioritization goes extreme
Agile development implements the highest-

priority features early so that customers can real-
ize the most business value. All the organizations
prioritize their feature lists repeatedly during de-
velopment as the customer’s and the developer’s
understanding of the project evolves, particularly
as requirements are added or modified.

The participants identified at least two impor-
tant differences between traditional and agile RE
in requirements prioritization. First, in traditional
RE, requirements are typically prioritized once.
In contrast, in the 16 organizations, agile RE in-
volves prioritizing requirements in each develop-
ment cycle. Prioritization often happens during the
planning meetings at the beginning of each cycle.
Moreover, requirements are prioritized together
with other development tasks such as incorporat-
ing changes to existing functionality, bug fixes, and
refactoring.

Second, in traditional RE, many factors drive
requirements prioritization—for example, busi-
ness value, risks, cost, and implementation depen-
dencies. Customers identify the features that pro-
vide them the greatest benefit; developers identify
technical risks, costs, or implementation difficul-
ties. In contrast, agile RE practitioners uniformly
reported that their prioritization is based predomi-
nantly on one factor—business value as the cus-
tomer defines it.

Benefits. Because customers are very involved in the
development process, they can provide business rea-
sons for each requirement at any development cycle.
Such a clear understanding of the customer’s pri-
orities helps the development team better meet cus-
tomer needs. Even BankSoft, which uses formal re-
quirement specifications, also benefits from frequent
reprioritization of requirements because, according
to one participant, “we were delivering high value
every step of the way.”

Also, in contrast to traditional development,

RE might
be appropriate
even in stable

business
environments

where the
changes often

come from
unforeseen
technical
issues.

	 January/February 2008 I E E E S o f t w a r e � 65

where achieving reprioritization is difficult, agile RE
provides numerous opportunities for reprioritization.

Challenges. Using business value (often focused on
time-to-market) as the only or primary criterion
for requirements prioritization might cause major
problems. For example, at FinCo, this approach
resulted in an architecture that wasn’t scalable. At
Transport, it resulted in a system that couldn’t ac-
commodate requirements (such as security and ef-
ficiency) that might initially appear secondary to the
customer but that become critical for operational
success. Furthermore, some participants observed
that continuous reprioritization, when not practiced
with caution, leads to instability.

Managing requirements change
through constant planning

Accommodating requirements changes during
development is a way of tuning the system to better
satisfy customer needs. Changes are easier to imple-
ment and cost less in agile development, a NetCo de-
veloper observed: “Planning is a constant activity. …
It’s constantly being revisited as these things change.
Because we don’t make fixed plans, and try to con-
form to them, accommodating change is easier.”

Participants commonly reported two types of
requirements changes: adding or dropping features,
and changing already implemented features. At the
end of each cycle, tests evaluate the implemented
features. Customers provide feedback and can re-
quest major changes if their expectations aren’t met.
In the 16 organizations, this kind of change is rela-
tively rare.

Such a low occurrence of major postdevelop-
ment change is interesting because this ability is of-
ten touted as an important benefit of agile processes.
The study participants believe that frequent com-
munication between the developer and the customer
during development obviates the need for changes
after development. Before implementing a feature,
the developer engages in detailed discussions with
the customer to roughly understand what he or she
needs. Also, the developer gets constant feedback
from the customer as the features are implemented.
Organizations that practice such intense interac-
tions reported a low need for major changes to the
delivered features.

Benefits. The early and constant validation of re-
quirements largely minimizes the need for major
changes. As an AgileConsult developer described,
most of the change requests are “usually more a case
of tweaks … spelling, little graphical things … for
example, color, positioning.”

So, the cost of addressing a change request de-
creases dramatically compared to traditional soft-
ware development.

Challenges. In several organizations, such as FinCo
and AgileConsult, the architecture the development
team chose during the early cycles became inad-
equate as requirements changed. Redesign of the ar-
chitecture added significantly to project cost.

Refactoring changes software’s internal struc-
ture to make it easier to understand and cheaper
to modify without changing its observable behav-
ior. However, for most participants, the need for
refactoring isn’t always obvious, and the ability to
refactor software depends on many factors, such as
the developers’ experience and schedule pressure.
Moreover, some participants reported that refactor-
ing, as an ongoing activity to improve the design, of-
ten doesn’t completely address the problem of inad-
equate or inappropriate architecture. Occasionally,
the only alternative is to throw away the code and
rewrite entire modules. One AgileConsult developer
reported that, because of this problem, he had to re-
write large application modules (200–330 KLOC)
about five times.

Prototyping
Many organizations, such as ServeIT, HuCap,

Transport, and Venture, develop a prioritized list of
features to settle requirements specification quickly.
According to one ServeIT participant, “This helps
reduce the margin of error. Piloting applications and
releasing them to end users in iterative fashion are
other useful practices.”

To a certain extent, the production software it-
self can be a form of operational prototype, a refine-
ment of the code created for experimentation with
required features. In several organizations, the rush
to market encourages a tendency to deploy these
prototypes rather than wait for robust implementa-
tions. The ability to quickly deploy newer versions
of the products on the Internet also contributes to
this tendency.

Benefits. Instead of incurring the overhead involved
in creating formal requirements documents, several
organizations use prototyping to communicate with
their customers to validate and refine requirements.
Eleven organizations regularly use prototypes to ob-
tain quick customer feedback on requirements.

Challenges. Some organizations are recognizing the
risks of deploying prototypes in production mode.
For example, at Entertain, maintaining or evolving
prototypes is difficult and has caused problems with

66	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

features such as scalability, security, and robust-
ness. Also, at TravelAssist, quick deployment of
prototypes in the early stages has created unrealis-
tic expectations among customers. They have been
unwilling to accept longer development cycles that
are necessary to develop more scalable and robust
implementations as the product matures.

Test-driven development
TDD is an evolutionary approach in which de-

velopers create tests before writing new functional
code. TDD treats writing tests as part of a require-
ments/design activity in which a test specifies the
code’s behavior. “You write code that talks about
what the system’s behavior should be. So you end up
writing very explicit specifications and not ‘tests,’”
explained an AgileConsult developer.

Benefits. Many organizations use tests to capture
complete requirements and design documentation
that are linked to production code. This traceability
makes incorporating changes easy, claimed an Ag-
ileConsult developer: “Having those tests allows you
to be more adventurous in terms of making changes
and trying out ideas. ... You get very quick feedback
if it goes wrong. … You write code that talks about
what the system’s behavior should be.”

Challenges. A major challenge to TDD’s adoption is
that developers aren’t accustomed to writing tests
before coding. Most developers in the study admit-
ted that they don’t consistently follow this practice
because it demands a lot of discipline. Another
challenge is that TDD requires a thorough under-
standing of the requirements and extensive collab-
oration between the developer and the customer,
because it involves refining low-level specifications
iteratively. Owing to these challenges, most organi-
zations reported that they’re unable to implement
this practice.

Use review meetings and acceptance tests
Almost all the organizations use frequent review

meetings for requirements validation. At the end of
each development cycle, they hold a meeting with
developers, customers, quality assurance person-
nel, management, and other stakeholders. During
the meeting, the developers demonstrate the deliv-
ered features, and the customers and QA people
ask questions and provide feedback. However, for
many organizations, these review meetings cover
only minor issues. As the SecurityInfo project man-
ager described, “We basically get some minor feed-
back [from the review meetings]. … The big thing
is when, at the start of the iteration, I sit down with

the product manager [the surrogate customer] to
talk about features. The PM sometimes brings up
new things he found out as he was talking to more
customers.”

Acceptance tests that the customer develops,
sometimes with help from the QA personnel, are
another means for validation and verification. Some
organizations treat these tests as part of require-
ments specification.

Benefits. In most organizations, the review meet-
ings primarily provide progress reports to the cus-
tomer and other stakeholders in the organization,
even though the meetings’ original purpose is to re-
view the developed features and get feedback. The
meeting’s perceived benefits include the opportuni-
ties to ascertain whether the project is on target, to
increase customer trust and confidence in the team,
and to identify problems early during development.
These meetings help considerably to obtain manage-
ment support for the project by providing frequent
updates on project status and progress to project
sponsors.

Challenges. The participants suggested that their
agile RE practice focuses more on requirements
validation than traditional approaches. However,
it doesn’t address aspects of formal verification
because there’s no formal modeling of detailed re-
quirements. Consistency checking or formal inspec-
tions seldom occur.

Although agile practices emphasize acceptance
testing, several organizations find implementing
such testing difficult owing to the difficulty of access
to the customers who develop these tests. So, many
organizations use QA personnel to help customers
develop these tests.

A comparison of agile RE practices
To develop a detailed understanding of the agile

RE practices, we determined the degree to which
the 16 organizations reportedly followed them (see
table 1). Most of the organizations rank high or me-
dium for most of the practices. However, not all the
organizations are encountering all the challenges
of agile RE practices. Almost all the organizations
reported that their most common challenges are
the inability to gain access to the customer and ob-
taining consensus among various customer groups.
TDD is the least-used practice (only six organiza-
tions adopt it) because, as we mentioned before,
most developers aren’t accustomed to the discipline
it requires. Surprisingly, although prototyping is
considered one of the most established practices, al-
most one-third of the organizations don’t practice

Agile RE
practices

are neither
panacea

nor poison
to the

challenges
intrinsic to RE.

	 January/February 2008 I E E E S o f t w a r e � 67

it. While the literature on traditional development
laments the inadequate attention paid to reviews
and tests, the 16 organizations use them extensively
in agile RE.

O ur study reveals that agile RE differs from
traditional RE in that it takes an iterative
discovery approach. Agile development oc-

curs in an environment where developing unambig-
uous and complete requirement specifications is im-
possible or even inappropriate. These fundamental
differences have led to the set of agile RE practices
we report here. The study participants identified the
intensive communication between the developers
and customers as the most important RE practice.
Instead of following a formal procedure to produce
a complete specification that accurately describes
the system, agile RE is more dynamic and adaptive.
As we mentioned before, agile RE processes aren’t
centralized in one phase before development; they’re
evenly spread throughout development.

Although agile RE practices provide benefits
such as improved understanding of customer needs
and the ability to adapt to the evolving needs of
today’s dynamic environment, they pose several
distinct challenges. The study suggests that agile
RE practices are neither panacea nor poison to the
challenges intrinsic to RE. Development organiza-
tions, therefore, should carefully compare the costs
and benefits of agile RE practices in their project
environment.

References
	 1.	 B. Boehm, “Requirements That Handle Ikiwisi, COTS,

and Rapid Change,” Computer, July 2000, pp. 99–102.
	 2.	 J. Erickson, K. Lyytinen, and K. Siau, “Agile Modeling,

Agile Software Development, and Extreme Program-
ming: The State of Research,” J. Database Manage-
ment, vol. 16, no. 4, 2005, pp. 88–99.

	 3.	 C.B. Seaman, “Qualitative Methods in Empirical Stud-
ies of Software Engineering,” IEEE Trans. Software
Eng., vol. 25, no. 4, 1999, pp. 557–572.

	 4.	 A. Strauss and J. Corbin, Basics of Qualitative

Research: Techniques and Procedures for Developing
Grounded Theory, Sage Publications, 1990.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

Table 1
Agile requirements-engineering practices in 16 organizations

Adoption
level

Practice

Face-to-face
communication Iterative RE

Extreme
prioritization

Constant
planning Prototyping

Test-driven
development

Reviews
& tests

High 8 9 10 8 8 5 11

Medium 8 5 6 6 3 1 4

Low 0 2 0 2 0 0 1

None 0 0 0 0 5 10 0

About the Authors
Lan Cao is an assistant professor of Information Technologies and Decision Sciences at
Old Dominion University. Her major research interests are agile software development and
software process modeling and simulation. She received her PhD in computer information
systems from Georgia State University. Contact her at the Dept. of Information Technology
and Decision Sciences, Old Dominion Univ., Norfolk, VA 23529; lcao@odu.edu.

Balasubramaniam Ramesh is a professor of computer information systems
at Georgia State University. He studies requirements engineering and traceability, agile
software development, and knowledge management. He received his PhD in information
systems from the Stern School of Business, New York University. He’s a member of the IEEE,
ACM, and the Association for Information Systems. Contact him at the Computer Information
Systems Dept., Georgia State Univ., 35 Broad St., Atlanta, GA 30302; bramesh@gsu.edu.

Log on to our Web site to
	 • Search our vast archives
	 • Preview upcoming topics
	 • Browse our calls for papers
	 • Submit your article for

		 publication
	 • Subscribe or renew

www.computer.org/software

