
Software Quality Assurance and
Testing
Casper Lassenius

19.2.2013

Software Quality
² Quality, simplistically, means that a product should meet

its specification.

² This is problematical for software systems
§  There is a tension between customer quality requirements

(efficiency, reliability, etc.) and developer quality requirements
(maintainability, reusability, etc.);

§  Some quality requirements are difficult to specify in an
unambiguous way;

§  Software specifications are usually incomplete and often
inconsistent.

2

Chapter 24 Quality
management

Validation	

Verification	

Software Quality

² Standard Glossary of Software Engineering
Terminology [IEEE610.12]:

§  The degree to which a system, component or process
meets specified requirements

§  The degree to which a system, component, or process
meets customer or user needs or expectations

ISO 9126 Quality Characteristics

Stakeholder Viewpoints
²  All stakeholders have different viewpoints

§  Customer
§  User

§  Programmer
§  Project manager

§  Tester
²  Note: even a bug-free product can be unacceptable to the user

§  User scenarios (use-cases) should be validated
§  Requirements should be validated

§  Usability needs to be considered
§  Documentation should be tested

§  Customer feedback process needs to be working

Quality conflicts

²  It is not possible for any system to be optimized for all of
these attributes – for example, improving robustness may
lead to loss of performance.

² The quality plan should therefore define the most
important quality attributes for the software that is being
developed.

² The plan should also include a definition of the quality
assessment process, an agreed way of assessing
whether some quality, such as maintainability or
robustness, is present in the product.

6

Chapter 24 Quality
management

Process and product quality

² The quality of a developed product is influenced by the
quality of the production process.

² This is important in software development as some
product quality attributes are hard to assess.

² However, there is a very complex and poorly understood
relationship between software processes and product
quality.
§  The application of individual skills and experience is particularly

important in software development;
§  External factors such as the novelty of an application or the need

for an accelerated development schedule may impair product
quality.

7

Chapter 24 Quality
management

Ensuring Software Quality

§  Understand what quality means in your context
§  Build quality in using appropriate processes
§  Quality assurance

•  Testing
•  Reviews / Inspections

Inspections and testing

Reviews and inspections

² A group examines part or all of a process or system and
its documentation to find potential problems.

² Software or documents may be 'signed off' at a
review which signifies that progress to the next
development stage has been approved by
management.

² There are different types of review with different objectives
§  Inspections for defect removal (product);
§  Reviews for progress assessment (product and process);
§  Quality reviews (product and standards).

10

Chapter 24 Quality
management

Quality reviews

² A group of people carefully examine part or all
of a software system and its associated
documentation.

² Code, designs, specifications, test plans,
standards, etc. can all be reviewed.

² Software or documents may be 'signed off' at a
review which signifies that progress to the next
development stage has been approved by
management.

11

Chapter 24 Quality
management

Inspections and testing

² Inspections and testing are complementary and not
opposing verification techniques.

² Both should be used during the V & V process.

² Inspections can check conformance with a specification
but not conformance with the customer’s real
requirements.

² Inspections cannot check non-functional characteristics
such as performance, usability, etc.

The software review process

Review
meeting

Individual
preparation

Group
preparation

Planning

Follow-up
checks

Improvement

Error
correction

 Pre-review activities Post-review activities

13

Chapter 24 Quality
management

Reviews and agile methods

² The review process in agile software development is
usually informal.
§  In Scrum, for example, there is a review meeting after each

iteration of the software has been completed (a sprint review),
where quality issues and problems may be discussed.

²  In extreme programming, pair programming ensures that
code is constantly being examined and reviewed by
another team member.

² XP relies on individuals taking the initiative to improve and
refactor code. Agile approaches are not usually standards-
driven, so issues of standards compliance are not usually
considered.

14

Chapter 24 Quality
management

Program inspections

² These are peer reviews where engineers examine the
source of a system with the aim of discovering anomalies
and defects.

²  Inspections do not require execution of a system so may
be used before implementation.

² They may be applied to any representation of the system
(requirements, design,configuration data, test data, etc.).

² They have been shown to be an effective technique for
discovering program errors.

15

Chapter 24 Quality
management

Advantages of inspections

² During testing, errors can mask (hide) other errors.
Because inspection is a static process, you don’t have
to be concerned with interactions between errors.

²  Incomplete versions of a system can be inspected
without additional costs. If a program is incomplete,
then you need to develop specialized test harnesses
to test the parts that are available.

² As well as searching for program defects, an
inspection can also consider broader quality attributes
of a program, such as compliance with standards,
portability and maintainability.

Inspection checklists

² Checklist of common errors should be used to
drive the inspection.

² Error checklists are programming language
dependent and reflect the characteristic errors that are
likely to arise in the language.

²  In general, the 'weaker' the type checking, the larger the
checklist.

² Examples: Initialisation, Constant naming, loop
termination, array bounds, etc.

17

Chapter 24 Quality
management

Agile methods and inspections

² Agile processes rarely use formal inspection or peer
review processes.

² Rather, they rely on team members cooperating to check
each other’s code, and informal guidelines, such as
‘check before check-in’, which suggest that programmers
should check their own code.

² Extreme programming practitioners argue that pair
programming is an effective substitute for inspection as
this is, in effect, a continual inspection process.

² Two people look at every line of code and check it before
it is accepted.

18

Chapter 24 Quality
management

Execution-based Testing

² “The process of inferring certain behavioral properties of
a product based, in part, on results of executing the
product in a known environment with selected inputs”

Testing is the process of exercising a program with the
specific intent of finding errors prior to delivery to the
end user

Exhaustive Testing

Who Should Test the Software?
² Developer

§  Understands the system
§  Driven by “delivery”
§  Tests “gently”

²  Independent tester
§  Must learn about the system
§  Driven by quality
§  Will attempt to break the system

² Customer
§  Acceptance testing

Testing — Some Observations

² A professional programmer produces ~6 faults/1000
lines of code

² New program with 200 000 LOC has ~1200 faults

² Program that have been in use for long have ~1 fault/
1000 LOC

² Error removal costs ca 12h/fault

Assessing Software Quality

Testing Strategy: The V-model

Requirements

Unit
testing

Coding

Module
design

Architecture
design

Functional
specification

Acceptance
testing

System
testing

Integration
testing

Build

Te
st

Testing policies

² Exhaustive system testing is impossible so testing policies
which define the required system test coverage may be
developed.

² Examples of testing policies:
§  All system functions that are accessed through menus should be

tested.
§  Combinations of functions (e.g. text formatting) that are accessed

through the same menu must be tested.
§  Where user input is provided, all functions must be tested with

both correct and incorrect input.

Chapter 8 Software testing

25

Prioritizing Tests
²  Time is always limited

²  Use risk to focus testing effort
§  what to test first
§  what to test most
§  how thoroughly to test each

feature
§  what not to test (at least for

now)
²  Most important tests first

•  Possible ranking criteria!
•  test where a failure would be most

severe!
•  test where failures would be most

visible!
•  test where failures are most likely!
•  ask the customers to prioritise the

requirements!
•  what is most critical to the

customer’s business!
•  areas changed most often!
•  areas with most problems in the

past!
•  most complex or technically critical

areas!

Realities in Software Testing
² Testing can show the presense of errors but cannot

show their absense

² All bugs cannot be found

² Testing does not create quality software or remove
defects

² Not all bugs found will be fixed

² Testing focuses on critiquing the product, not the
developer(s)

An input-output model of program
testing

Ie
Input test data

Oe
Output test results

System

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects

28

Chapter 8 Software testing

A model of the software testing process

Design test
cases

Prepare test
data

Run program
with test data

Compare results
to test cases

Test
cases

Test
data

Test
results

Test
reports

29

Chapter 8 Software testing

Stages of testing

² Development testing, where the system is tested during
development to discover bugs and defects.

² Release testing, where a separate testing team test a
complete version of the system before it is released to
users.

² User testing, where users or potential users of a system
test the system in their own environment.

Chapter 8 Software testing

30

Development testing

² Development testing includes all testing activities that are
carried out by the team developing the system.
§  Unit testing, where individual program units or object classes are

tested. Unit testing should focus on testing the functionality of
objects or methods.

§  Component testing, where several individual units are integrated
to create composite components. Component testing should focus
on testing component interfaces.

§  System testing, where some or all of the components in a system
are integrated and the system is tested as a whole. System testing
should focus on testing component interactions.

Chapter 8 Software testing

31

Unit testing

² Unit testing is the process of testing individual
components in isolation.

²  It is a defect testing process.

² Units may be:
§  Individual functions or methods within an object
§  Object classes with several attributes and methods
§  Composite components with defined interfaces used to access

their functionality.

32

Chapter 8 Software testing

Automated testing

² Whenever possible, unit testing should be automated so
that tests are run and checked without manual
intervention.

²  In automated unit testing, you make use of a test
automation framework (such as JUnit) to write and run
your program tests.

² Unit testing frameworks provide generic test classes that
you extend to create specific test cases. They can then
run all of the tests that you have implemented and report,
often through some GUI, on the success of otherwise of
the tests.

Chapter 8 Software testing

33

Testing strategies

² Partition testing, where you identify groups of inputs that
have common characteristics and should be processed in
the same way.
§  You should choose tests from within each of these groups.

² Guideline-based testing, where you use testing guidelines
to choose test cases.
§  These guidelines reflect previous experience of the kinds of errors

that programmers often make when developing components.

Chapter 8 Software testing

34

Equivalence partitions

Between 10000 and 99999Less than 10000 More than 99999

9999
10000 50000

100000
99999

Input values

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values

35

Chapter 8 Software testing

Testing guidelines (sequences)

² Test software with sequences which have only a single
value.

² Use sequences of different sizes in different tests.

² Derive tests so that the first, middle and last elements of
the sequence are accessed.

² Test with sequences of zero length.

36

Chapter 8 Software testing

General testing guidelines

² Choose inputs that force the system to generate all error
messages

² Design inputs that cause input buffers to overflow

² Repeat the same input or series of inputs numerous times

² Force invalid outputs to be generated

² Force computation results to be too large or too small.

37

Chapter 8 Software testing

System testing

² System testing during development involves integrating
components to create a version of the system and then
testing the integrated system.

² The focus in system testing is testing the interactions
between components.

² System testing checks that components are compatible,
interact correctly and transfer the right data at the right
time across their interfaces.

² System testing tests the emergent behaviour of a system.

38

Chapter 8 Software testing

Use-case testing

² The use-cases developed to identify system interactions
can be used as a basis for system testing.

² Each use case usually involves several system
components so testing the use case forces these
interactions to occur.

² The sequence diagrams associated with the use case
documents the components and interactions that are
being tested.

Chapter 8 Software testing

39

Test-driven development

² Test-driven development (TDD) is an approach to program
development in which you inter-leave testing and code
development.

² Tests are written before code and ‘passing’ the tests is the
critical driver of development.

² You develop code incrementally, along with a test for that
increment. You don’t move on to the next increment until
the code that you have developed passes its test.

² TDD was introduced as part of agile methods such as
Extreme Programming. However, it can also be used in
plan-driven development processes.

40

Chapter 8 Software testing

Test-driven development

Identify new
functionality

Write test Run test
Implement

functionality and
refactor

fail

pass

41

Chapter 8 Software testing

TDD process activities

² Start by identifying the increment of functionality that is
required. This should normally be small and
implementable in a few lines of code.

² Write a test for this functionality and implement this as an
automated test.

² Run the test, along with all other tests that have been
implemented. Initially, you have not implemented the
functionality so the new test will fail.

²  Implement the functionality and re-run the test.
² Once all tests run successfully, you move on to

implementing the next chunk of functionality.

42

Chapter 8 Software testing

Benefits of test-driven development

² Code coverage
§  Every code segment that you write has at least one associated

test so all code written has at least one test.

² Regression testing
§  A regression test suite is developed incrementally as a program

is developed.

² Simplified debugging
§  When a test fails, it should be obvious where the problem lies.

The newly written code needs to be checked and modified.

² System documentation
§  The tests themselves are a form of documentation that describe

what the code should be doing.

43

Chapter 8 Software testing

Regression testing

² Regression testing is testing the system to check that
changes have not ‘broken’ previously working code.

²  In a manual testing process, regression testing is
expensive but, with automated testing, it is simple and
straightforward. All tests are rerun every time a change is
made to the program.

² Tests must run ‘successfully’ before the change is
committed.

44

Chapter 8 Software testing

Release testing

² Release testing is the process of testing a particular release
of a system that is intended for use outside of the
development team.

² The primary goal of the release testing process is to convince
the supplier of the system that it is good enough for use.
§  Release testing, therefore, has to show that the system delivers its

specified functionality, performance and dependability, and that it does
not fail during normal use.

² Release testing is usually a black-box testing process where
tests are only derived from the system specification.

45

Chapter 8 Software testing

Release testing and system testing

² Release testing is a form of system testing.

²  Important differences:
§  A separate team that has not been involved in the system

development, should be responsible for release testing.
§  System testing by the development team should focus on

discovering bugs in the system (defect testing). The objective of
release testing is to check that the system meets its requirements
and is good enough for external use (validation testing).

46

Chapter 8 Software testing

Performance testing
² Part of release testing may involve testing the emergent

properties of a system, such as performance and
reliability.

² Tests should reflect the profile of use of the system.

² Performance tests usually involve planning a series of
tests where the load is steadily increased until the system
performance becomes unacceptable.

² Stress testing is a form of performance testing where the
system is deliberately overloaded to test its failure
behaviour.

47

Chapter 8 Software testing

User testing

² User or customer testing is a stage in the testing process
in which users or customers provide input and advice on
system testing.

² User testing is essential, even when comprehensive
system and release testing have been carried out.
§  The reason for this is that influences from the user’s working

environment have a major effect on the reliability, performance,
usability and robustness of a system. These cannot be replicated
in a testing environment.

48

Chapter 8 Software testing

Types of user testing

² Alpha testing
§  Users of the software work with the development team to test the

software at the developer’s site.

² Beta testing
§  A release of the software is made available to users to allow them

to experiment and to raise problems that they discover with the
system developers.

² Acceptance testing
§  Customers test a system to decide whether or not it is ready to be

accepted from the system developers and deployed in the
customer environment. Primarily for custom systems.

49

Chapter 8 Software testing

The acceptance testing process

Define
acceptance

criteria

Test
criteria

Plan
acceptance

testing

Derive
acceptance

tests

Run
acceptance

tests

Negotiate
test results

Accept or
reject

system

Test
plan

Tests Test
results

Testing
report

50

Chapter 8 Software testing

Agile methods and acceptance testing

²  In XP, the user/customer is part of the development team
and is responsible for making decisions on the
acceptability of the system.

² Tests are defined by the user/customer and are integrated
with other tests in that they are run automatically when
changes are made.

² There is no separate acceptance testing process.

² Main problem here is whether or not the embedded user
is ‘typical’ and can represent the interests of all system
stakeholders.

51

Chapter 8 Software testing

Re-testing
² Run a test, it fails, fault reported

² New version of software with fault “fixed”

² Re-run the same test (i.e. re-test)
§  must be exactly repeatable
§  same environment, versions (except for the

intentionally changed software)
§  same inputs and preconditions

²  If test now passes, fault has been fixed correctly—or
has it?

Smoke Testing
²  A common approach when using “daily builds”

²  Smoke testing steps

§  Software components are integrated into a build
•  A build includes all data files, libraries, reusable modules, and

engineered components that are required to implement one or more
features

§  A series of tests is designed to expose errors
•  The intent is to uncover “show stopper” errors that have the highest

likelihood of throwing the project behind schedule
§  The build is integrated with other builds and the entire product is smoke

tested daily

Questions?

