

Enabling Agile Testing Through Continuous Integration

Sean Stolberg
Pacific Northwest National Laboratory

Sean.stolberg@pnl.gov

Abstract

A Continuous Integration system is often considered

one of the key elements involved in supporting an agile
software development and testing environment. As a
traditional software tester transitioning to an agile
development environment it became clear to me that I
would need to put this essential infrastructure in place
and promote improved development practices in order
to make the transition to agile testing possible. This
experience report discusses a continuous integration
implementation I led last year. The initial motivations
for implementing continuous integration are discussed
and a pre and post-assessment using Martin Fowler's
"Practices of Continuous Integration" is provided
along with the technical specifics of the
implementation. The report concludes with a
retrospective of my experiences implementing and
promoting continuous integration within the context of
agile testing.

1. Introduction

“Hi. My name is Sean and I’m software tester. I’ve
been waterfall-testing-free for over a year now.”
(Applause is heard, hugging observed).

Ok, hopefully you found at least a little bit of humor
in that first paragraph, but I really do feel like I’ve
been in “Waterfall Testing Rehab” for over a year now.
This experience report describes significant aspects of
my journey transitioning from a more traditional
“software QA” role to a more effective “agile software
tester”. Specifically, I will share my experiences
implementing a Continuous Integration system to
enable the transition to agile testing techniques and
approaches.

As a software tester that had worked in a traditional
waterfall software development environment for eight
years, I took my first job with an agile development
team in November of 2007. I had no idea the changes
that lay ahead of me in testing.

For my first two sprints I tried applying traditional
testing approaches (test plan, clarify requirements,
write test cases, test case review, etc) but kept coming
up very short on time, and thus coverage, by the end of
the iteration. “Technical testing debt” was
accumulating in the form of manual regression tests
needing to be run at the end of every sprint. We just
didn’t have time to run them. In summary, all of the
instinctive ways I knew how to test were not holding
up in the context of short iterations delivering new
functionality.

The two team developers and I discussed how
things were going and we agreed that I needed to find a
way to insert my testing activities much earlier into the
development of the sprint if we were to get the
coverage needed and be able to test, find, and fix issues
before the end of the sprint. We also agreed that we
couldn’t continue to accumulate technical testing debt
in the form of manual regression tests.

Further research into agile testing techniques
revealed some critical practices my team would need to
implement in order to start using agile testing
techniques. The most significant practices identified
are listed below:

1. Define and execute “just-enough”
acceptance tests [1] - This practice allows the
customer to define external quality for the
team and gives everyone confidence that user
stories are complete and functional at the end
of the sprint.

2. Automate as close to 100% of the
acceptance tests as possible [2] - This
practice prevents accumulation of technical
testing debt in the form of an ever-growing
manual regression test set that requires the
team to stop and run the tests.

3. Automate acceptance tests using a
“subcutaneous” test approach with a xUnit
test framework [2] - Using an xUnit type
framework and our software Application
Programmer Interface (API) to automate
acceptance tests allows for less-brittle test
creation and easier development and

2009 Agile Conference

978-0-7695-3768-9/09 $25.00 © 2009 IEEE

DOI 10.1109/AGILE.2009.16

369

maintenance of an automated regression suit.
This is compared to Graphical User Interface
(GUI) test automation applications.

4. Run all acceptance tests in the regression
test suite with the build, daily (at a
minimum) [4] - This practice provides rapid
feedback to the team if existing functionality
has regressed by new code development
changes.

5. Develop unit tests for all new code during a
sprint [5] - This practice raises internal
quality of the software and permits the “just-
enough” acceptance testing described in
number 1 above.

6. Run all unit tests with every build [4] - This
practice provides rapid feedback to the team if
regressions at the unit level occur with any
code changes.

7. Run multiple builds per day [4] - This
practice allows testing and exercising the
latest code and changes throughout the day. It
also allows for more frequent integration of
developer code and thus quicker feedback into
potential integration issues.

Again, these practices are what my team initially
decided we needed to adopt in order to test early and
test often, enabling us to find bugs in-line with
development. This would also allow us to fix bugs at a
cheaper cost before the developers moved on to
another development task during the course of a sprint
or project. But we had an immediate problem to
address.

2. The Problem

The main problem was that our team didn’t have an
automation framework of any kind in place to
implement several of the practices that would allow us
to test in an agile way. Further, as we identified and
discussed specific practices we were reminded of other
areas of technical debt our team carried such as our
manual build process. This process required three
passes to build without error and no unit and functional
test automation existed. These were problems we
needed to contend with in order to begin implementing
the practices we had identified.

3. The Solution

I discovered, through conversations with other agile
test practitioners and additional research, a common
element among teams already successfully
implementing agile testing techniques: continuous
integration. A continuous integration implementation

seemed to be the solution to our lack of an automation
framework. Now we needed to find out more about
continuous integration so we could build our system.

4. What is Continuous Integration?

 “Continuous Integration” describes a set of
software engineering practices that speed up the
delivery of software by decreasing integration times. It
emerged in the Extreme Programming (XP)
community, and XP advocates Martin Fowler and Kent
Beck first wrote about continuous integration eight
years ago [3].

Martin Fowler defines continuous integration as:
“a software development practice where members of a
team integrate their work frequently, usually each
person integrates at least daily - leading to multiple
integrations per day. Each integration is verified by an
automated build (including test) to detect integration
errors as quickly as possible.” [4].

What does a continuous integration implementation
look like?1 Typically a continuous integration
framework provides for automated source repository
change detection. When changes to the repository are
detected (e.g. when developers check in new code) a
potential chain of events is put into motion. A typical
first step in this chain of events is to get the latest
source code and compile it (or for interpreted code
perform some other checks like applying a form of
lint). If compilation does not fail, then unit tests are
executed. If unit testing does not fail, the application is
deployed to a test environment where automated
acceptance tests can be executed. If automated
acceptance tests do not fail, the build is published to a
public location for the team. The team is then notified
(e.g. via email or RSS) and a report generated for the
activities that included what and how many tests were
run, the build number, links to results and the build,
etc.

5. Continuous Integration Implementation

Our software development environment consisted
basically of Windows® .NET C# applications. Thus
several of our choices for implementing continuous
integration were heavily influenced by what would
work in this environment.

5.1. Layout

1 To view a diagram of a possible continuous integration flow see
“Figure 1, Continuous Integration Process Flow” posted at this URL:
http://becomingagiletester.blogspot.com/2009/05/figure-1-
continuous-integration-process.html.

370

The basic layout of our continuous integration
implementation consisted of two physical machines
and two virtual machines (VM). One physical machine
hosted our virtual build machines. The other physical
machine hosted our virtual test machines.

There is no reason that, given enough memory and
CPU power on a single virtual host, we could not have
chosen to host both build VMs and test VMs on the
same physical machine. However we decided to
separate the build VMs and test VMs to simplify
management and restrictions in computing resources;
our build VM host couldn’t support the additional load
of hosting our test VMs.

5.2. Software Tools Used

This is a list of the software tools used to implement
our continuous integration.
• Automated Build Studio – Automated Build

Studio™ (ABS) by AutomatedQA is an automated
build and continuous integration Windows
application. A license had been purchased for this
application and was already being used to run
manual builds on a few projects. Thus, while open
source alternatives could have been used, we
chose to continue using this tool as it was easy to
configure and meant less tool-shift for our teams.

• Software Test Automation Framework (STAF)
– STAF provides a service to send and receive
remote commands between build and test
machines such as copying files, executing
programs, getting directory listings, etc. This tool
was chosen as tests showed it to be a fairly robust
way to handle communication between machines.
The fact that it is a mature (seven-years-old) and
open-source project developed by an IBM group
helped us make the decision.

• Visual Studio 2008 – Microsoft® Visual Studio
2008® development IDE includes a compiler that
was already being used to build our applications.

• Surround – Seapine Surround SCM™ repository
and versioning system is a source control system
was already in place.

• VBScript –Microsoft VBScript™ was used to
write a helper script to reset the test VM just
before each new application install and test
iteration. VBScript is natively supported on
Windows platforms and thus is a good boot-strap
language for Windows.

• C# custom helper applications – C# was used to
create a few tools used to distribute, execute, and
collect unit and acceptance test results. C# was
chosen because we were most familiar with it (we
were using it to develop most of our products), it’s

very powerful, and the .NET environment required
to run C# applications was already installed on the
build machine where they would need to run. The
custom helper applications we wrote and used
were:

o Test Distributor discovers all NUnit
project files in a specified product
directory tree, and then copy all
necessary .dlls and other files used by the
project over to the product installation
directory on the test VM for execution
later

o Test Runner runs each NUnit project in
the product installation directory of the
test VM.

o Test Results Processor processes XML
test results for each NUnit project test
run, aggregates results (summary, list of
failures, failure details) and write to html
for later inclusion in build email.

• NUnit – NUnit is a test framework for all .Net
languages used to execute unit and acceptance
tests. We chose NUnit because the developers
were already using it to develop unit tests and we
also found that we could use it to develop and
execute acceptance tests as well.

5.3. Tool Mapping

Here is how our tool set mapped to the layout
described earlier:

1. Build VM
a. Automated Build Studio
b. STAF
c. Visual Studio 2008
d. Surround
e. NUnit
f. VBScript
g. C# helper apps

2. Test VM Host
a. STAF
b. Virtual Server 2005
c. VBScript

3. Test VM
a. STAF
b. NUnit

5.4. Putting It All Together

Our continuous integration implementation works
like this2:

2 Diagram of our implementation available at this URL:
http://becomingagiletester.blogspot.com/2009/05/figure-1-
continuous-integration-process.html.

371

1. The ABS service runs polling the Surround
source repository for changes/check-ins

2. If a change is detected, a new build is started
performing the following actions:
a. Refresh source code on build machine for

project/solution to be built
b. Build the application (ABS using

VS2008)
c. Prep the test VM for product installation

and testing; reset virtual machine and
ping until it comes back online (VBScript
helper script called via STAF)

d. Copy installation files to test VM (STAF)
e. Install application-under-test on test VM

(STAF)
f. Discover and copy all Unit and

Acceptance tests to test VM (custom C#
helper application, uses STAF)

g. Execute tests on test VM (custom C#
helper application, uses STAF)

h. Copy test result .xml file from test VM to
build machine (STAF)

i. Process test results into results email
j. Send email with test results (PASS or

FAIL with details of failures), link to
location of build, and build logs

6. Assessing the Team’s Continuous
Integration Practices

It’s worth noting that Martin Fowler has put forth
10 Practices of Continuous Integration.[4] These
practices help make continuous integration
implementations go smoothly. Or put another way,
trying to implement a continuous integration system
without these practices could prove to be a rocky
experience. The following list compares these practices
with where our team was before and after we
implemented continuous integration, providing a pre-
and post-assessment of the practices.

1. Maintain a Single Source Repository
 Before CI: Seapine Surround SCM

source repository
 After CI: No change

2. Automate the Build
 Before CI: Some partial automation; still

very manual. Heterogeneous build
environments

 After CI: Yes, with Automated Build
Studio (ABS)

3. Make Your Build Self-Testing
 Before CI: Not self testing
 After CI: NUnit framework unit and

acceptance tests

4. Everyone Commits Every Day
 Before CI: Unknown, varied probably
 After CI: We can only hope

5. Every Commit Should Build the Mainline
on an Integration Machine

 Before CI: No, was not happening
 Yes, ABS's Continuous Integration Tasks

helped us do this
6. Keep the Build Fast

 Before CI: Multi-pass builds, unordered
dependencies

 After CI: 10 – 15 min; refactoring needed
sooner than later

7. Test in a Clone of the Production
Environment

 Before CI: Yes, but not automated
 After CI: Using clean virtual machine test

clients to install and test
8. Make it Easy for Anyone to Get the Latest

Executable
 Before CI: Not all projects using the

common build repository. Some private
file share locations for production code

 After CI: All products building to
common location now. Build
mail contains link to new build location

9. Everyone can see what's happening
 Before CI: Limited to ad-hoc emails, no

web, no reporting, different project
worked differently

 After CI: Use ABS's web interface to see
the progress of builds, and email build
and test status

10. Automate Deployment
 Before CI: Not being done
 After CI: Yes, automatically deploy the

build, then test it
In summary, all continuous integration practices

were either maintained, if existing, or improved upon.

7. Assessing Our New Agile Testing
Practices and Agile Testing Capabilities

With our continuous integration system in place our
team was now positioned to adopt all of the agile
development techniques discussed earlier. And while
not every practice relied on the continuous integration
system, a few important ones did. These are identified
in Table 3, Agile Practice Assessment after
Implementing Continuous Integration.

Let’s do a check up on where our team was now in
regard to these agile practices. Practices marked with a

 were enabled using our new continuous integration
system:

372

1. Define and execute “just-enough”
acceptance tests - We made acceptance test
definition a required task during sprint
planning. The developers and customer both
grew to like this as it gave them visibility into
our test coverage and confidence that we were
testing the right things.

2. Automate as close to 100% of the
acceptance tests as possible - We now tried
to automate as close to 100% acceptance tests
as possible. But this process takes time to
fully implement. There were still lots of
legacy manual tests around but the awareness
and commitment to automate them going
forward were what we focused on. The net
result was that we dramatically slowed our
accumulation of technical test debt in the form
of manual test cases.

3. Automate acceptance tests using a
“subcutaneous” test approach with an
xUnit test framework - We now used the
NUnit test framework to automate our
acceptance/functional testing using the API of
the application. A nice side benefit is that our
new tests going forward were all code, could
be versioned in the repository, and could run
in an automated fashion with the build.

4. Run all acceptance tests in the
regression test suite with the build, daily (at
a minimum) - Our NUnit acceptance tests
now ran with a daily build.

5. Develop unit tests for all new code during a
sprint - Developers started putting more
emphasis on developing unit tests in NUnit
for new code during the same sprint. This was
a gradually improving process encouraged
with the ease with which unit tests could now
be run with the build.

6. Run all unit tests with every build - Our
NUnit unit tests now ran with every build.

7. Run multiple builds per day - Builds
were now started automatically when changes
to the source repository were checked in.
Manual builds could also be initiated.

As you can see in the list above, at least at a base
level, all of the agile practices we set out to put in
place. These practices started paying off immediately
in terms of our ability to develop and test in parallel.

For example, now that unit tests were run with
every build the team saw immediately when new code
broke existing code. Moreover, I was able to
immediately begin working with developers to
automate acceptance tests as they were coding the
stories. While the practices were still pretty new to us,

it felt like a big win to have an environment that would
allow us to improve how we worked together. We
began finding bugs in the APIs I was using to automate
the acceptance tests with. We also began finding other
technical debt we needed to pay in order to keep going
forward, like the lack of a command line installation
for our applications or a programmatic way to call data
validation to inputs that lived outside of the application
GUI.

8. Retrospective

The journey from recognizing we needed to test in a

different way to accommodate agile development to
implementing the agile practices and continuous
integration that would support it has been educational
and rewarding.

First, learning how to change how I tested to
operate in sync with developers was one of the biggest
discoveries I’ve made in my testing career. Testers,
developers, and all other stakeholders I’ve worked with
have always wanted to be able to do this, but it wasn’t
exactly clear how to do it. Testing in parallel with
development has overcome the traditional disjointed
relationship between test and development.

Second, embracing the idea that we need to fully
automate acceptance tests seemed both exciting and
intimidating. The idea was very appealing but I also
worried that it would be too difficult to scale. The
subcutaneous test approach using xUnit test
frameworks was the answer that finally made sense
and seemed doable. Of course it required that I code
much more and work with the developers to learn the
API of our product.

Third, it’s not hard to convince developers that
automating tests is a good idea. But it was hard to
convince them that we needed to go through our
implementation “hump of pain” to get the pieces in
place that would allow us to have continuous
integration. I worked on a small team and we didn’t
seem to have any “extra’ time for me to work on the
infrastructure we needed.

I ended up working on the proof-of-concept during
my lunch, sometimes in the evening or weekend, and
during other down times. When I finally got things to a
point where builds were automatically kicking off and
the test VM launching, developers became engaged
and excited. I identified the remaining tasks we would
need to tie it all together. The team agreed to add them
as sprint backlog items.

There is probably a more savvy way to approach the
buy in for developing a continuous integration system,
but I didn’t know how else to approach it other than
through prototype and demonstration. What I learned

373

was developing a continuous integration system is as
much the responsibility of the developers as it is the
testers.

Finally, thinking of acceptance test development
within the context of a continuous integration system
has been a major shift. It’s hard to think of going back
to doing it the old way. I can’t imagine working on a
team that is not doing agile testing, let alone agile
development. I, like many other agile testers, believe it
makes much more sense and costs less to push testing
and quality into the development cycle rather than to
add it afterward. It adds value immediately. As I move
to new teams, and begin working with them, my first
step to implement agile testing approaches to
accommodate agile development will be to consider
implementing a continuous integration system to
support it.

9. References

[1] “eXtreme Rules of the Road: How a tester can steer an
eXtreme Programming project toward success”, Lisa Crispin,
STQE Jul/Aug 2001

[2] “Testing Extreme Programming”, Lisa Crispin and Tip
House, 2003, Addison Wesley

[3] “Continuous integration”,
http://en.wikipedia.org/wiki/Continuous_Integration

[4] “Continuous Integration”, Martin Fowler,
http://www.martinfowler.com/articles/continuousIntegration.
html

[5] “Code the Unit Test First”,
http://www.extremeprogramming.org/rules/testfirst.html

374

