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WHY FINITE ELEMENTS AND ITS THEORY?

Design of machines and structures: Solution to stress or displacement by analytical

method is often impossible due to complex geometry, heterogeneous material etc.  Lack of

the “exact solution” to an “approximate problem” is not an issue in engineering work.

Finite element method is the standard of solid mechanics: Commercial codes in

common use are based on the finite element method. A graphical user interface may make

living easier, but a user should always understand what the problem is and in what sense it

is solved!

Finite element method has a strong theory: Although approximate solution is

acceptable, knowing nothing about the error is not acceptable.
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STRUCTURE ANALYSIS

Stress analysis according to the linear elasticity theory may not entirely explain behavior

of a structure!
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PROGRAMMER’S VIEWPOINT
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LINEAR ELASTICITY

Balance of mass (def. of a body or a material volume) Mass of a body is constant

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. 

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular

momentum within a material volume equals the external moment resultant acting on the

material volume. 

Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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BOUNDARY VALUE PROBLEM

Assuming an equilibrium of a solid body (a set of particles) inside domain ς , the aim is to

find displacement uθ  of the particles, when external forces or boundary conditions are

changed in some manner:

Equilibrium equations 0fρ∠ √ ∗ <
θσ    in ς ,

Hooke’s law
1 1 2

( )E I u
µ µ

µρ δ∗
∗ ,

< ∠ √
σ σσ θ    in ς ,

Boundary conditions n tρ√ <
θθ σ   or u g<

θ θ   on ∝ς .

The balance of angular momentum is satisfied ‘a priori’ by the symmetric form of the

Hooke’s law.

dVθ
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tdA
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fdV
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EQUILIBRIUM EQUATIONS

The left-hand side of the equilibrium equation is the sum of the volume and surface forces

acting on a material element of the body. The component forms are

:x 0yxxx zx
xfx y z

ρρ ρ∝∝ ∝
∗ ∗ ∗ <

∝ ∝ ∝
,

:y 0xy yy zy
yf

x y z
ρ ρ ρ∝ ∝ ∝

∗ ∗ ∗ <
∝ ∝ ∝

,

:z 0yzxz zz
zfx y z

ρρ ρ∝∝ ∝
∗ ∗ ∗ <

∝ ∝ ∝
,

The first index of a stress component refers to the direction of the surface normal and the

second that of the force component.
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HOOKE’S LAW

The generalized Hooke’s law of an isotropic homogeneous material and be expressed in

the component forms

Strain-stress:
1

1 1
1
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δ µ µ ρ
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µ µδ ρ
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    < , ,    
   , ,     

 and

2
12

2

xy xy xy

yz yz yz

zx zx zx
G

φ δ ρ
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Strain-displacement:
/
/
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u z

δ
δ

δ

   ∝ ∝
   

< ∝ ∝   
   ∝ ∝   
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/ /

/ /

/ /

xy x y

yz y z

zx z x

u y u x
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u x u z

φ

φ

φ

∝ ∝ ∗ ∝ ∝   
   

< ∝ ∝ ∗ ∝ ∝   
   ∝ ∝ ∗ ∝ ∝   

in which E  is the Young’s modulus, µ the Poisson’s ratio, and / (2 2 )G E µ< ∗ the shear

modulus.
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MATERIAL PARAMETERS

Material ρ [ 3kg / m ] E  [ 2GN / m ] ν  [ 1 ]

Steel 7800 210 0.3

Aluminum 2700 70 0.33

Copper 8900 120 0.34

Glass 2500 60 0.23

Granite 2700 65 0.23

Birch 600 16 -

Rubber 900 10-2 0.5

Concrete 2300 25 0.1
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PRINCIPLE OF VIRTUAL WORK

Principle of virtual work int ext 0W W Wχ χ χ< ∗ < uχ!
θ
 is just one form of the equilibrium

equations.

TT
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< , ∗       
       
       

〉
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W f u dV t u dA
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< ∗       
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The details of the expressions vary case by case, but the principle itself does not!
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VIRTUAL WORK DENSITIES

Virtual work densities of the internal forces, external volume forces, and external surface

forces are (subscripts ς  and ∝ς denote virtual work per unit volume and area,

respectively)

Internal forces:

TT
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yy yy yz yz

zz zz zx zx

w
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χ ρ χδ ρ χφ

ρ χδ ρ χφ
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External forces:
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.

Virtual work densities consist of terms containing kinematic quantities and their “work

conjugates” !
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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems on the topics of week 2:

ς  Engineer paradigm in FEM, elements and nodes, nodal quantities and sign

conventions.

ς  Displacement analysis of simple structures by using the virtual work expressions of the

elements.

ς  Calculations of the element constributions of force, solid, beam, and plate elements out

of virtual work density of the model and element approximation.
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1.1 NOTATIONS AND CONVENTIONS
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ENGINEERING PARADIGM

A complex structure is represented as a collection of structural parts (or elements) which

can be modelled as beams, plates etc.
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STRUCTURAL AND MATERIAL SYSTEMS

Element contributions are represented in elementwise ( , , )x y z ,coordinate systems.

Transformation into ( , , )X Y Z ,structural system is required for the structural integrity.
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SIGN CONVENTIONS AND NOTATIONS

Displacements, rotations, forces and moments are vector quantities whose components are

positive in the directions of the chosen coordinate axes. The convention may differ from

that used in mechanics of materials courses (be careful with that).

Displacement Force Rotation Moment

Material , ,x y zu u u , ,x y zF F F , ,x y zπ π π , ,x y zM M M

Structural , ,X Y Zu u u , ,X Y ZF F F , ,X Y Zπ π π , ,X Y ZM M M

The basis vectors of the material and structural systems are ( , , )i j k
θθ θ

and ( , , )I J K
θ θ θ

,

respectively!
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1.2 DISPLACEMENT ANALYSIS

ς  Model the structure as a collection of beam, plate, etc. elements.

ς  Derive the element contributions eWχ  and express the nodal displacement and rotation

components of the material coordinate system in terms of those in the structural

coordinate system.

ς  Sum up the element contributions to end up with the virtual work expression of the

structure e
e EW Wχ χ⊆<  . Re-arrange to get the standard form T ( )Wχ χ< , ,a Ka F .

ς  Use the principle of virtual work 0Wχ < χ! a, fundamental lemma of variation

calculus for nχ ⊆a € , and solve for the unknown nodal displacement and rotation

components from the system equations 0, <Ka F .
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 BAR ELEMENT

Assuming a linear interpolation for the axial displacement at the endpoints for ( )xu u x≠ ,

virtual work expressions of the internal and external forces take the forms

T
1 1int

2 2

1 1
1 1

x x

x x

u uEAW
u uh

χ
χ

χ
,    

< ,     ,    
,

T
1ext
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12
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u f hW
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χ
χ

χ
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.

Above, xf , E , and A are assumed to be constants. The relationship between the axial

displacement component and the displacement components in the structural coordinate

system is x X X Y Y Z Zu i u i u i u i u< √ < ∗ ∗
θ θ  and x X X Y Y Z Zu i u i u i u i uχ χ χ χ χ< √ < ∗ ∗

θ θ .
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BEAM BENDING ELEMENT

Assuming a cubic interpolation for ( )zu w x≠  in terms of the nodal displacements 1zu , 2zu

and rotations 1 2,y yπ π , virtual work expressions take the forms

T
1 1

2 21 1int
3

2 2
2 22 2

12 6 12 6

6 4 6 2
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z z
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Above, zf  , yyI  and E  are assumed to be constants.
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EXAMPLE 1.1. A bar truss is loaded by a point force having magnitude F as shown in

the figure. Determine the nodal displacements. Cross-sectional area of bar 1-2 is A and

that for bar 3-2 8A. Young’s modulus is E and weight is omitted.

Answer 1
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∂ For element 1, the relationships between the nodal displacement components in the

material and structural systems are 1 0xu <  and 2 2x Xu u< . Element contribution 1Wχ

to the virtual work expression of the structure is

T
1

2 2
2 2

0 01 1 0
( )

1 1 0 X X
X X

EA EAW u u
u uL L

χ χ
χ

,      
< , , < ,      ,      

.

∂ For element 2, 3 0xu <  and 2 2 2( ) / 2x X Zu u u< ∗ . Element contribution takes the

form

T
2

2 2 2 2

0 01 1 01 8 1( )
1 1 02 2 2X Z X Z

E AW
u u u uL

χ
χ χ

,      
< , ,      ∗ ∗,      

∨

2
2 2 2 2( )( )X Z X Z

EAW u u u u
L

χ χ χ< , ∗ ∗ .
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∂ Virtual work expression of the point force follows from the definition of work

3
2ZW u Fχ χ< .

∂ Virtual work expression of the structure is obtained as the sum of the element

contributions

2 2 2 2 2 2 2( )( )X X X Z X Z Z
EA EAW u u u u u u u F
L L

χ χ χ χ χ< , , ∗ ∗ ∗ ∨

T
2 2

2 2

2 1 0
( )

1 1
X X

Z Z

u uEAW
u u FL

χ
χ

χ
      

< , ,      
     

.

∂ Using the principle of virtual work 0Wχ < χ! a and the fundamental lemma of

variation calculus

”standard” form
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∂ The Mathematica description of the problem is given by
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EXAMPLE 1.2. Consider the beam truss shown. Determine the displacements and

rotations of nodes 2 and 4. Assume that the beams are rigid in the axial directions so that

the axial strain vanishes. Cross-sections and lengths are the same and Young’s modulus E

is constant.

Answer
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∂ Only the bending in XZ-plane needs to be accounted for. The displacement and rotation

components of the structure are 2Xu , 2Yπ ,   and 4Yπ .  As  the  axial  strain  of  beam  2

vanishes, axial displacements satisfy 4 2X Xu u< .

T

2 2
1

32 2
2 22 2

12 6 12 60 0
0 06 4 6 2

( )
12 6 12 6

6 2 6 4
X X

Y Y

L L

L L L LEIW
u uL LL

L L L L

χ
χ
χπ π

, , ,    
    ,    < ,     ,    

       , 

2 2 2 2( , )z X y Yu u π π< <

T

2 2
2 22

3

2 24 4

12 6 12 60 0
6 4 6 2

( )
0 012 6 12 6

6 2 6 4

Y Y

Y Y

L L

L L L LEIW
L LL

L L L L

χπ π
χ

χπ π

, , ,    
    ,    < ,     ,    

       , 

2 2 4 4( , )y Y y Yπ π π π< <
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T
2 2

2 2
4 43

3

2 2
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L LL
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χ
χπ π

χ

, , , , ,     
      , ,      < , ,      ,      

           , 

4 2( )z Xu u< ,

∂ Virtual work expression of the structure is

T
2 2

1 2 3 2 2
2 23

2 24 4

24 6 6 6
( 6 8 2 0 )

12
6 2 8

X X

Y Y

Y Y

L Lu u
EI fLW W W W L L L
L LL L L

χ
χ χ χ χ χπ π

χπ π

  ,     
      < ∗ ∗ < , ,      

       ,      

∂ Principle of virtual work 0Wχ < χ! a and the fundamental lemma of variation

calculus give
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∂ In the Mathematica code calculation, horizontal displacements of nodes 2 and 4 are

forced to be same ( 4 2X Xu u< )
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1.3 ELEMENT CONTRIBUTIONS

Virtual work expressions for the solid, beam, plate elements combine virtual work

densities representing the model and a case dependent approximation. To derive the

expression for an element:

ς   Start with the virtual work densities intwχ ς and extwχ ς of the formulae collection (if not

available there, derive the expression in the manner discussed in MEC-E1050).

ς  Represent the unknown functions by interpolation of the nodal displacement and

rotations (see formulae collection). Substitute the approximations into the density

expressions.

ς  Integrate the virtual work density over the domain occupied by the element to get Wχ .
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ELEMENT APPROXIMATION

In MEC-E8001, element approximation is a polynomial interpolant of the nodal

displacement and rotations in terms of shape functions. In displacement analysis, shape

functions depend on ( , , )x y z  and the nodal values are parameters to be evaluated by FEM.

Approximation T<u N a

Shape functions T
1 2{ ( , , ) ( , , ) ( , , )}nN x y z N x y z N x y z<N ϑ

Parameters T
1 2{a a a }n<a ϑ

Nodal parameters a { , , , , , }x y z x y zu u u π π π⊆  may be just displacement or rotation

components or a mixture of them (as with the Bernoulli beam model).

always of the same form!
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ELEMENT GEOMETRY
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QUADRATIC SHAPE FUNCTIONS

Piecewise quadratic approximation is continuous in ς and second order polynomial inside

the elements. In a typical element eς

Approximation: Tu < N a

Nodal values: ζ |T
1 2 3u u u<a

Shape functions:

2
1

2

3

1 3 2
4 (1 )

(2 1)

N
N
N

ω ω
ω ω

ω ω

 , ∗ 
  < < ,   

   ,   

N ,
x
h

ω <

More nodes can be used to generate higher order approximations!
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1 32
2N

1N 3N
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LINEAR SHAPE FUNCTIONS

A piecewise linear approximation is continuous in ς and linear inside each element of

triangle shape. In a typical element

Approximation: Tu < N a

Nodal values: ζ |T
1 2 3u u u<a

Shape functions:

1

1 2 3

1 2 3

1 1 1 1
x x x x
y y y y

,
  
  <         

N

Triangle element is the simplest element in two dimensions. Division of any 2D domain

into triangles is always possible, which makes the element quite useful.
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CUBIC SHAPE FUNCTIONS

Piecewise cubic approximation has continuous derivatives up to the first order in ς and is

a third order polynomial inside the elements.

Approximation: Tu < N a

Nodal values: ζ |1 1 2 2( / ) ( / )u du dx u du dx<a

Shape functions:
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N h
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N h

ω ω
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 , ∗      , < <   
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     , 

N

In xz , plane bending zu u< , / ydu dx π< ,  and in xy ,plane bending yu u< , / zdu dx π< .

20u

21u

11u

1 2

11N

10N

u

20N



Week 2-35

FORCE ELEMENT

External point forces and moments are assumed to act on the joints. They are treated as

elements associated with one node only. Virtual work expression is usually simplest in the

structural coordinate system:

T T
X X X X

Y Y Y Y

Z Z Z Z

u F M
W u F M

u F M

χ χπ
χ χ χπ

χ χπ

       
       < ∗       
              

Above, , ,X Y ZF F F  and , ,X Y ZM M M  are the given components. A rigid body can be

modeled as a particle at the center of mass connected to the other joints of the body by

rigid links!

, ,X Y Zπ π π

, ,X Y Zu u uX
ZY
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SOLID MODEL

The model does not contain assumptions in addition to those of linear elasticity theory.

T T

int
/ / / / / /
/ [ ] / / / / /
/ / / / / /

u x u x u y v x u y v x
w v y E v y v z w y G v z w y

w z w z w x u z w x u z

χ χ χ
χ χ χ χ

χ χ χ
ς

∝ ∝ ∝ ∝ ∝ ∝ ∗ ∝ ∝ ∝ ∝ ∗ ∝ ∝       
       < , ∝ ∝ ∝ ∝ , ∝ ∝ ∗ ∝ ∝ ∝ ∝ ∗ ∝ ∝       
       ∝ ∝ ∝ ∝ ∝ ∝ ∗ ∝ ∝ ∝ ∝ ∗ ∝ ∝       

,

T

ext
x

y

z

u f
w v f

w f

χ
χ χ

χ
ς

  
  <    

   
   

 and

T

ext
x

y

z

u t
w v t

w t

χ
χ χ

χ
∝ς

  
  <    

   
   

 in which

11
[ ] 1

1
E E

µ µ
µ µ
µ µ

,, , 
 < , , 
, ,  

.

The solution domain can be represented, e.g, by tetrahedron elements with linear

interpolation of the displacement components ( , , )u x y z , ( , , )v x y z , and ( , , )w x y z
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EXAMPLE 1.3. A tetrahedron of edge length L , density θ , and elastic properties E  and

µ  is subjected to its own weight on a horizontal floor. Calculate the displacement 3Zu of

node 3 with one tetrahedron element and linear approximation. Assume that

3 3 0X Yu u< < , and that the bottom surface is fixed.

Answer:
22

3
1
4

1 2
1Z

gLu
E

µ µ
µ

θ , ,
< ,

,

3

1

X,x

4 2
Y,y

Z,z
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L

L

g
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∂ Linear shape functions can be deduced directly from the figure 1 /N x L< , 2 /N y L< ,

3 /N z L< , and 4 1 / / /N x L y L z L< , , , . However, only the shape function of node

3 is needed as the other nodes are fixed. Approximations to the displacement

components are

0u < , 0v < ,  and 3Z
zw u
L

< ,  giving 0w w
x y

∝ ∝
< <

∝ ∝
  and 3

1
Z

w u
z L

∝
<

∝
.

∂ When the approximation is substituted there, the virtual work densities of the internal

and external forces simplify to

T

int 3 3
2 2

3 3

1
11

(1 )(1 2 )(1 )(1 2

0 0
( )0

) 1
0 Z Z

V

Z Z

u uE Ew
L Lu

µ µ µ
µ

µ µ
χ

χ
χ

µ
µ µµ µ µ µ µ

    
,   

,
,
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TT

ext
3

3

0 0
0 0

x

V y Z

Zz

u f
z zw v f g u
L L

w u gf

χ
χ χ θ χ

χ χ θ

      
      < < < ,       

       ,     

.

∂ Virtual work expressions are obtained as integrals of densities over the volume:

3
int int int

3 3
1

(1 )(1 2 )
1

6 6 Z Z
LW w dV w ELu uµ

µ µ
χ χ χ χς ςς

< < <
,

∗ ,
,〉 ,

3
ext ext

324 Z
LW w dV g uχ χ θ χςς

< < ,〉 .

∂ Finally, principle of virtual work 0Wχ < χ! a with int extW W Wχ χ χ< ∗  and the

fundamental lemma of variation calculus imply
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22
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∂ In Mathematica code of the course, the problem description is given by
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BEAM MODEL

The bar, torsion bar, and bending modes of a beam are connected unless the first and cross

moments (off-diagonal terms of the matrix) of the cross-section vanish:

T

int 2 2 2 2

2 2 2 2
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/ /

/ /
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z zz zy p

y yz yy

d u dx du dxA S S
d dw d v dx E S I I d v dx GI
dx dx

S I Id w dx d w dx

χ
χε εχ χ

χ
ς

    , ,
    

< , , ,    
    ,     

T T

ext /
/

x x

y y

z z

u f m
w v f d w dx m

w d v dxf m

χ χε
χ χ χ

χ χ
ς

      
      < ∗ ,       

       
      

  (

T T

ext
X X X X

Y Y Y Y

Z Z Z Z

u F M
W u F M

u F M

χ χπ
χ χ χπ

χ χπ

       
       < ∗       
              

)

In  FEM  the  solution  domain  (a  line  segment)  is  represented  by  line  elements  and  the

displacement and rotation components ( )u x , ( )v x , ( )w x , and ( )xε  by their interpolants.

traction on the end surfaces
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BAR MODE

Assuming that 0v < , 0w < , 0ε <  and a linear approximation to ( )u x  in terms of the end

point displacements 1xu , 2xu , virtual work expressions of the internal and external forces

take the forms

T
1 1int

2 2

1 1
1 1

x x

x x

u uEAW
u uh

χ
χ

χ
,    

< ,     ,    
,

T
1ext

2

1
12

x x

x

u f hW
u

χ
χ

χ
   

<    
  

.

Above, xf , E , and A are assumed to be constants. The relationship between the axial

displacement component and the displacement components in the structural coordinate

system is x X X Y Y Z Zu i u i u i u i u< √ < ∗ ∗
θ θ .

x
EA

h

2xu

z

1xu
xf
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TORSION MODE

Assuming that 0u < , 0v < , 0w < , and a linear approximation to ( )xε  in terms of the end

point rotations 1 2,x xπ π , virtual work expressions of the internal and external forces take

the forms

T
1 1int

2 2

1 1
1 1

x xrr

x x

GIW
h

χπ π
χ

χπ π
,    

< ,     ,    
,

T
1ext

2

1
12

x x

x

m hW
χπ

χ
χπ

   
<    

  
.

Above, xm , E , and rrI  are assumed to be constants. The relationship between the axial

rotation component and the rotation components in the structural coordinate system is

x X X Y Y Z Zi u i i iπ π π π< √ < ∗ ∗
θ θ .

x
GIrr

h

2xπ

z

1xπ
xm
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BENDING MODE (xz-plane)

Assuming that 0u < , 0v < , 0ε < , and a cubic approximation to ( )w x  in terms of the end

point displacements 1zu , 2zu  and rotations 1 2,y yπ π :

T
1 1

2 21 1int
3

2 2
2 22 2

12 6 12 6

6 4 6 2
12 6 12 6

6 2 6 4

z z

y yyy

z z

y y

h hu u
EI h h h h

W
u h h uh

h h h h
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    ,    
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6

612
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y z

z

y

u

hf hW
u

h
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χπ

χ
χ
χπ

   
   ,   <    
   
     

Above, zf  , yyI  and E  are assumed to be constants.

xEIyy

h
2zu

z

2yπ1yπ 1zu

zf
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BENDING MODE (xy-plane)

Assuming that 0u < , 0w < , 0ε < , and a cubic approximation to ( )v x  in  terms  of  point

displacements 1yu , 2yu  and rotations 1zπ , 2zπ

T
1 1

2 2
1 1int

32 2
2 2

2 2

12 6 12 6

6 4 6 2
12 6 12 6

6 2 6 4

y y

z zzz

y y

z z
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h h h hEIW
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z

u
f h h

W
u

h

χ

χπ
χ

χ
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      <    
   
   ,  

Above, yf  , zzI  and E  are assumed to be constants.

xEIzz

h
2yu

y

2zπ1zπ 1yu

yf
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EXAMPLE 1.4. The Bernoulli beam of the figure is loaded by its own weight and a point

force acting on the right end. Determine the displacement and rotation of the right end

starting with the virtual density of the Bernoulli beam model. The x-axis of the material

coordinate system is placed at the geometric centroid of the rectangle cross-section. Beam

properties A, zzI I< ,  and E  are constants.

Answer: 2X
FLu
EA

< and
3

2
1
48Y

gAL
EI

θπ <

L

Z,y

X,x

gAθ

F
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∂ Bernoulli beam element of the Mathematica code requires the orientation of the

y ,axis unless y ,axis and Y ,axis are aligned. Orientation is given by additional

parameter defining the components of j
θ

 in the structural coordinate system:
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PLATE MODEL

Virtual work densities combine the plane-stress and plate bending modes. Assuming that

the material coordinate system is placed at the geometric centroid

T2 2T
3

int 2 2

2

// /
/ [ ] / / [ ]

12
/ / / / 2 /

w xu x u x
tw v y t E v y w y E
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     ∝ ∝ ∗ ∝ ∝ ∝ ∝ ∗ ∝ ∝    ∝ ∝ ∝  

2 2

2 2

2

/

/

2 /
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T
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,  and
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ext
x

y

z
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w v t

w t

χ
χ χ

χ
∝ς
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.

Approximation to the displacement components ( , )u x y , ( , )v x y , ( , )w x y  should be

continuous and ( , )w x y  should also have continuous derivatives at the element interfaces.
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EXAMPLE 1.5. Consider the thin triangular structure shown. Young’s modulus E,

Poisson’s ratio µ , and thickness t are constants. Distributed external force vanishes.

Assume plane-stress conditions, XY ,plane deformation and determine the displacement

of node 1 when the force components acting on the node are as shown in the figure.

Answer: 1

1

(1 )(1 2 )
1

1
1

X

Y

F
Et

u
u

µ µ
µ

∗   
<  ,

  , 

,



1 2

3

F

x,X

y,Y

L

L

F

1

2
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∂  Nodes 2 are 3 are fixed and the non-zero displacement components are 1Xu and 1Yu .

Linear shape functions 1 ( ) /N L x y L< , , , 2 /N x L<  and 3 /N y L<  are easy to

deduce from the figure. Therefore

1

1

X

Y

uu L x y
uv L

   , ,
<   

   
⇑ 1

1

/ 1
/

X

Y

uu x
uv x L

∝ ∝   
< ,   ∝ ∝   

 and 1

1

/ 1
/

X

Y

uu y
uv y L

∝ ∝   
< ,   ∝ ∝   

.

∂ Virtual work density of internal forces is given by

T
1 1

int
1 12 2

1 1 1 1

1 0
1 1 0

1 0 0 (1 ) / 2

X X

Y Y

X Y X Y

u u
tEw u u

Lu u u u

χ µ
χ χ µ

µχ χ µ
ς

    
    < ,     ,   ∗ , ∗     

.

∂ Integration over the triangular domain gives (integrand is constant)
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T
1 1

1
1 12
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∂ Virtual work expression for the point forces follows from the definition of work

T
12

1

X

Y

u F
W

u F
χ

χ
χ

,   
<    ,  

 .

∂ Principle of virtual work in the form 1 2 0W W Wχ χ χ< ∗ < χ! a  and the fundamental

lemma of variation calculus give
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T
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. 

The point forces acting on a thin slab should be considered as “equivalent nodal forces”

i.e. just representations of tractions acting on some part of the boundary. Under the action

of an actual point force, displacement becomes non-bounded. In practice, numerical

solution to the displacement at the point of action increases when the mesh is refined.

∂ In Mathematica code of the course, the problem description is given by
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EXAMPLE 1.6. Consider a plate strip loaded by its own weight. Determine the deflection

w  according to the Kirchhoff model. Thickness, length and width of the plate are t , L,

and h, respectively. Density θ , Young’s modulus E , and Poisson’s ratio µ are constants.

Use the one parameter approximation 0
2 2(1 / )( /( )) x Lw x xa L,< .

Answer:
4

2 2 2
2 1 )

2
)1( )( (w gL x x

L LtE
θ µ, ,< ,

x,X

y,Yz,Z

L

g

h
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∂ Approximation satisfies the boundary conditions ‘a priori’ and contains a free

parameter 0a  (not associated with any node) to be solved by using the principle of

virtual work:

0
2 2(1 ) )(x x

L
w a

L
,< ⇑

2

0
2

2 2
2 [1 6 ]6( )x x

L
w a

x L L
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∝
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2 0w w
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∝ ∝
< <

∝ ∝∝
.

∂ When the approximation is substituted there, virtual work densities simplify to

2
3

int 2
0 0 2 4

1 [1 ]
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L L

χ χ
µ
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,

,

0
2 2ext (1 ) )(x x

L
w a gt

L
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∂ Integrations over the domain ]0, [ ]0, [L hς < ≥ give the virtual works of internal and

external forces
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3
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∂ Principle of virtual work int ext 0W W Wχ χ χ< ∗ < χ! a  and the fundamental lemma of

variation calculus give finally 0aχ!
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