

Contemporary Web Development
Lesson 1

http://bit.ly/cannotfeelmybones

http://bit.ly/cannotfeelmybones

● https://avner.js.org
● https://github.com/Avnerus
● avner.peled@aalto.fi

Hey mlab, Avner here.

Notable web projects:
● https://github.com/Avnerus/tzina : WebVR Documetary (IDFA Doclab 2016).
● https://github.com/Avnerus/STIR : Mobile Web App (IDFA Doclab 2017) .
● https://github.com/Avnerus/silencecaptive : Wi-Fi Portal (CCA Gallery).
● https://github.com/Raycasters/Marrow : AI Installation (IDFA Doclab 2018).
● https://github.com/Avnerus/sofbot : Sof Robotic Avatar Platform (MA Thesis).
● https://github.com/Avnerus/riot-isomorphic : RiotJS Framework powering Feature.fm

https://avner.js.org/
https://github.com/Avnerus
https://github.com/Avnerus/tzina
https://github.com/Avnerus/STIR
https://github.com/Avnerus/silencecaptive
https://github.com/Raycasters/Marrow
https://github.com/Avnerus/softbot
https://github.com/Avnerus/riot-isomorphic
http://feature.fm/home/

Disclaimer

This world is moving so fast that everything might
change soon.

Also this the first time I am teaching this course (or
any), so this the beta phase.

Evolution of web technology
http://www.evolutionofheweb.com/

● Static HTML/CSS
telnet www.oocities.org 80
GET /hollywood/1525/ HTTP/1.1
Host: www.oocities.org

● Javascript
● Weird Hybrids (Java, Flash, ActiveX, Silverlight)
● AJAX
● HTML5 (Canvas, SVG)
● Node JS
● Front-end frameworks
● Web Extensions

http://www.evolutionoftheweb.com/
http://www.oocities.org/

The web browser is slowly
replacing the operating system,
becoming a standard for content.

* Chrome OS powered notebook now supports
Android apps and more.

** Firefox OS has been discontinued and forked by
several other projects.

Having the browser as the main operating system
solves many issues regarding cross platform
compatibility and security. Everything is based on
standards and runs in secure environment.
Run ,multiple tabs like multiple processes.

Progressive web apps are standards for running
offline and/or cached web content. They also
support multiple threads.

But let’s focus on one tab.

 https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

The rendering engine parses the DOM tree.

https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

<html>
 <body>
 <p>
 Hello World
 </p>
 <div> </div>
 </body>
</html>

DOM is the object tree model that is represented by
the tree of tags.

HTML elements with no content are called empty
elements.

 is an empty element without a closing tag (the

 tag defines a line break).

Empty elements can be "closed" in the opening tag
like this:
.

HTML5 does not require empty elements to be
closed. But if you want stricter validation, or if you
need to make your document readable by XML
parsers, you must close all HTML elements
properly.

HTML is almost XML

A more standard HTML is XHTML
An empty tag must still have / ()

A happy family

<father name=”Papa” age=50>
<refrigerator>

ice cream
</refrigerator>

</father>
<mother name=”Mama” age=45>

<son name=”Johnny” age=8>
sugar

</son>
<daughter

name=”Neene”
age=7
 oneatsugar=”changeMood(‘happy’)

/>
</mother>

A happy family

<father name=”Papa” age=50>
<refrigerator>

ice cream
</refrigerator>

</father>
<mother name=”Mama” age=45>

<son name=”Johnny” age=8>
sugar

</son>
<daughter

name=”Neene”
age=7
 oneatsugar=”changeMood(‘happy’)

/>
</mother>

Don't actually do this in web
development. Structure and
behavior should be separated.
"Unobtrusive Javascript"

Code style guide
<johnny

age=8
shirt-color=”pink”
pants-color=”pink”
favorite-food=”sugar”

/>

Let's think about Reddit.

https://www.reddit.com/%5C

All about <components>
Web components

Polymer React Riot JS

We are moving beyond the strict definition of HTML
elements.

The named components are being processed by the
front-end engine and rendered into HTML UI
elements.

The upcoming web components standard is powered
by the “Shadow DOM”

HTML5 Semantic
Elements

Styling <father name=”Papa” age=50 class=”human”>
<refrigerator>

ice cream
</refrigerator>

</father>
<mother name=”Mama” age=45
class=”human”>

<son id=”child1” name=”Johnny” age=8>
sugar

</son>
<daughter

name=”Neene”
age=7
 oneatsugar=”changeMood(‘happy’)

/>
</mother>

.human {
 empty-cells: show;
}
father {

overflow: visible;
}
#child1 {

border: none;
}

.human refrigerator {
box-shadow: 6px 6px #666

}

https://css-tricks.com/specifics-on-css-specificity/

CSS Specificity - Example

https://css-tricks.com/specifics-on-css-specificity/
https://codepen.io/Avnerus/pen/dwyWgo

Contemporary Style:
SASS - Example

Also showing attribute selectors and inherited vs non
inherited properties.

https://codepen.io/Avnerus/pen/Vqwrrb

200px 100px - 50px -

100px

100px100px100px

Standard paragraph spacing

Variable Width

Can also be done using postion:relative and top:

Why not just margin? They collapse

https://www.w3.org/TR/CSS21/box.html#collapsing-m
argins

"Margins collapse between adjacent elements. In
simple terms, this means that for adjacent vertical
block-level elements in the normal document flow,
only the margin of the element with the largest
margin value will be honored, while the margin of
the element with the smaller margin value will be
collapsed to zero"

https://www.w3.org/TR/CSS21/box.html#collapsing-margins
https://www.w3.org/TR/CSS21/box.html#collapsing-margins

Three methods for
centering elements.

Even more here http://thenewcode.com/723/Seven-Ways-of-Centering-With-CSS

https://codepen.io/collection/DybdBz/#
http://thenewcode.com/723/Seven-Ways-of-Centering-With-CSS

Responsive Design with
Media Queries - Example

https://codepen.io/Avnerus/pen/GPZJWG

Javascript

The runtime model
Stack Heap

Queue

More info

Stack – The call stack of normal javascript functions,
it remebers the state of each function executing.

Heap – All javascript variables are objects that are
passed by reference and are allocated on the
memory heap. They are ‘reference-counted’, so
when an object has 0 references, it will be ‘garbage
collected’.

Queue – The Event Message Queue of user and
asynchronous events.

https://flaviocopes.com/javascript-event-loop/

Call Stack LIFO

function multiply(x, y) {
 return x * y;
}
function printSquare(x) {
 var s = multiply(x, x);
 console.log(s);
}
printSquare(5)

From https://blog.sessionstack.com/how-does-javascript-actually-work-part-1-b0bacc073cf

https://blog.sessionstack.com/how-does-javascript-actually-work-part-1-b0bacc073cf

Event Queue FIFO

Blocking / Non-blocking
Example

I/O is such as network requests are never blocking,
They get offloaded to the browser's API threads.
But normal functions and code loops are blocking

since javascript is single-threaded,

Good video:
 https://www.youtube.com/watch?v=8aGhZQkoFbQ

https://codepen.io/Avnerus/pen/yGOgzb
https://www.youtube.com/watch?v=8aGhZQkoFbQ

Listening to Events and Event
Bubbling
Example

I/O is such as network requests are never blocking,
But normal functions and code loops are blocking

since javascript is single-threaded,

https://codepen.io/Avnerus/pen/ZVWKEg

Warm up exercise – your dream
website OR a sample website.

Don’t think about styling (css positioning) details.
Just think about the tree structure, what are the

components? What is contained in what? What are
the component attributes?

Think about actions and reaction to “events”, either
user generated events or any ‘external’ event.

Something starts running on startup?

Window.onload = () => {

}

Home exercise – Stack/Queue tracing

<html>
<body>

<div id=”cracker”>
</div>

</body>
</html>

#cracker {
background-color: brown;
width: 100px;
height: 200px;

}

window.onload = function run() {
 let cracker = document.querySelector("#cracker");
 cracker.addEventListener("click", dipCracker);
}
function dipCracker(event) {
 let cracker = event.target;
 if (cracker.style.backgroundColor != "green") {
 cracker.style.backgroundColor = "green";
 dipCracker(event);
 } else {
 setTimeout(function eat() {
 console.log("Yummy!")
 cracker.style.display = "none";
 },2000);
 console.log("Nom Nom...");
 }
}

Pen

Imagine the user opens the page and then clicks on
the cracker.

Trace the state of the stack queue and event queue
throughout the process.

https://codepen.io/Avnerus/pen/NerqWz

Also practice:

● CSS Selectors: https://flukeout.github.io/

https://flukeout.github.io/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

