

Contemporary Web Development
Lesson 11

https://www.youtube.com/user/Kosmicd12/

https://www.youtube.com/user/Kosmicd12/

Web Hosting

Static VS Dynamic serving and the newer
"Serverless" option

Static Websites
● A standard static website has no backend. Just a bunch of HTML files

with javascript. It can still be very rich but has no "persistence", user
authentication, backend logic, data etc. Useful for:

● Portfolio
● Blog

● That makes it super fast because in serving pages because there is no
backend logic.

● Can use a limited amount of storage on the user's device via Cookies
or the LocalStorage API.

● Can become more dynamic by using a Static website generator such
as Jekyll or Hugo – The author updates metadata on their own PC and
then publishes the newly generated HTML files.

A static website has no server logic – no
authentication, no backend, no data is saved
remotely. all information is available on the client. It
can still be very rich.

Can also access remote APIs, but only with the
client's credentials.

Can even save a local state in the browser
"Localstorage" but there's a limit to how much you
can save.

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://jekyllrb.com/
https://gohugo.io/

Hosting for Static websites
● Github pages
● You own computer / Raspberry Pi clone (I use this).
● Peer to Peer hosting! Such as Hashbase or Cloudflare's

Distributed Web Gateway on IPFS

https://pages.github.com/
https://www.cnx-software.com/2015/08/01/cloudshell-for-xu4-is-a-39-nas-kit-for-odroid-xu4-board/
https://hashbase.io/
https://www.cloudflare.com/distributed-web-gateway/

Dynamic/Server websites
● Can use any technology on the backend.
● Usually connects to other services, a database etc.

Hosting for Dynamic websites (Case study:
Node JS)

● Virtual servers on the cloud such as Amazon EC2.
● Heroku virtual Node JS server.
● You own computer / Raspberry Pi clone (I use this).
● Rent someone else's server for cheap such as from

https://lowendbox.com/

https://aws.amazon.com/ec2/
https://signup.heroku.com/node?c=70130000000NeLCAA0&gclid=Cj0KCQiAvqDiBRDAARIsADWh5TcHD78KYHvfgKICAS6dEvf8UrEUDKQcKXiuQZltLdjP_iJgyKDiY_0aAhvNEALw_wcB
https://www.cnx-software.com/2015/08/01/cloudshell-for-xu4-is-a-39-nas-kit-for-odroid-xu4-board/
https://lowendbox.com/

Server/service hosting got easier

multiplied

When your server components, are stateless, you
can easily share the load between them, do a
failover, move them around etc, with no need to do
any replication.

Generally application servers are stateless while
database/store services are stateful.

Load balancing

REST vs Websockets

Websockets are statefull because they maintain
connected clients.

The session itself also occurs in one server until
disconnected.

But what happens when a server (let’s say a chat
server) publishes a message to all of the clients?

More here

https://medium.com/containers-on-aws/scaling-a-realtime-chat-app-on-aws-using-socket-io-redis-and-aws-fargate-4ed63fb1b681

Serverless websites
● All the power of the server, but no need to worry about infrastructure,

load balancing, scaling, etc.
● Can pay per usage and not per up-time

Serverless websites providers
● Firebase.
● Amazon's AWS ecosystem.

https://firebase.google.com/
https://aws.amazon.com/

My utopia

How about security?
Blockchain?

Continuing YOLO

Organizing the State
state.js

export const Render = {
 backgroundColor: "rgba(255,0,0,0)",
 updateBackground: function(color) {
 }
};
observable(Render);

Index.js

import * as State from './state'

 State.Render.on(
'background-updated', (color) => {

 }
)

State.Render.updateBackground("rgba(1,1,1,1)");

More tips

● Think about how we can trigger a background change when a bottle
appears , disappears and then appears again.

● Let's have another state variable – the state of the bottle. Let's trigger a
'bottle-present-updated' event only when the state changes – Only
when the bottle switches from present to non-present or vise-versa.

● Also it might be more readable if we send the actual changed value along
with the event trigger.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

