

Contemporary Web Development
Lesson 6

https://www.youtube.com/watch?v=vUgyGVCDaYs

https://www.youtube.com/watch?v=vUgyGVCDaYs

Fork async-spacehip

Step into the server side

Up until now we've been using the Webpack
development server.

It can only serve files, we couldn't perform any
asynchronous web requests.

 ...or

Express is a highly modular server/routing framework
for Node JS. It's most powerful feature is the
"middleware" system.

https://github.com/lukeed/polka

A standard for resource access:
Some API history

 SOAP (formerly known as Simple Object Access Protocol)
 SOAP-over-UDP[3]
 SOAP Message Transmission Optimization Mechanism
 WS-Notification
 WS-BaseNotification
 WS-Topics
 WS-BrokeredNotification
 WS-Addressing
 WS-Transfer
 WS-Eventing
 WS-Enumeration
 WS-MakeConnection

Metadata Exchange Specification

 JSON-WSP
 WS-Policy
 WS-PolicyAssertions
 WS-PolicyAttachment
 WS-Discovery
 WS-Inspection
 WS-MetadataExchange
 Universal Description Discovery and Integration (UDDI)
 WSDL 2.0 Core
 WSDL 2.0 SOAP Binding
 Web Services Semantics (WSDL-S)
 WS-Resource Framework (WSRF)

Security Specification

 WS-Security
 XML Signature
 XML Encryption
 XML Key Management (XKMS)
 WS-SecureConversation
 WS-SecurityPolicy
 WS-Trust
 WS-Federation
 WS-Federation Active Requestor Profile
 WS-Federation Passive Requestor Profile
 Web Services Security Kerberos Binding
 Web Single Sign-On Interoperability Profile
 Web Single Sign-On Metadata Exchange Protocol
 Security Assertion Markup Language (SAML)
 XACML

We needed a standard so software vendors could
open up their services as APIs.

SOAP was overly bloated, required WSDL definition
protocol, started branching into all kinds of
enhancement specifications.

REST

Example: Twitter's API

REST stands for "Representational State Transfer"
From Roy Fielding's doctoral dissertation from 2000.
Slowly started getting adopted by tech companies

such as Flickr and Amazon.
I saw it get popularized after DHH started pushing it.
Now is basically everywhere.
The idea is to use simple HTTP methods and a

naming standard for accessing resources. Just like
the simple HTTP GET I did in the first lesson, the
GET can be replaced by PUT/POST/DELETE

https://developer.twitter.com/en/docs/api-reference-index.html

REST is complemented by CRUD, a standard for
updating resources. Any action could be defined as
one of the following operations on a specified
resource path.

Installing Express and using with
Babel/ES6

1) Can start by forking the async-spaceship project.
2) We need to separate client from server.

1) # mv src client
2) # mkdir server
3) Update the webpack entry

3) # npm install --save express
4) Create server/index.js
5) # npm install --save-dev @babel/node
6) Change start command to "babel-node server/index.js" in

pacakge.json
7) We need a .babelrc file where babel-node can read its

configuration,

https://version.aalto.fi/gitlab/cwd/rest-spaceship/raw/master/server/index.js?inline=true

Regarding Stateless/Statefull

Webpack is best suited for client environments.
Client programs are statefull, refresh resets the state

and we don't want that.
We should keep Server APIs stateless! Then

restarting is not a problem.

Adding Client Webpack support
And server Nodemon support

1) # npm install --save-dev webpack-dev-middleware
2) # npm install --save-dev webpack-hot-middleware
3) Add obscure entry to webpack.config.js
4) Update server/index.js

1) #npm install --save-dev nodemon
2) Update the package.json start script to:

nodemon server/index.js --exec babel-node
3) And we need to configure nodemon in package.json to not

restart on client changes:
 "nodemonConfig": {
 "ignore": ["client/*"]
 }

https://version.aalto.fi/gitlab/cwd/rest-spaceship/raw/master/webpack.config.js?inline=true
https://version.aalto.fi/gitlab/cwd/rest-spaceship/raw/master/server/index.js?inline=true

{
"spaceship" : {

"engines": [
{

"model": "NYAN5K"
"power" : 5000,

},
{

"model" : "NYAN6K"
"power": 6000

}
]

}
}

● [] - Array
● { } - Object/Dictionary.
● " " - String.
● No quotes - number.
● "xxx": yyyy – Key: value
● Other data types such as

date are normally parsed by
the application from string.

Adding a server-side spaceship log

import fs from 'fs'

const LOG_FILE = 'log.txt'
export function writeLog(text) {
 return new Promise((resolve, reject) => {
 fs.appendFile(LOG_FILE, text, (err) => {
 if (err) {
 reject(err);
 }
 else {
 resolve();
 }
 });
 });
}

./file-logger.js

 app.post('/log', async function (req, res) {
 try {
 await FileLog.writeLog(
 new Date().toLocaleString() + ": " +
 req.body.text + "\n"
);
 res.send({status: "success"})
 }
 catch(err) {
 res.status(500).send({ error: err.toString() });
 }
 });

./routes.js

Using Fetch
async function serverLog(text) {
 try {
 let data = {text: text};
 let response = await fetch(BASE_URL + 'log', {
 method: 'POST',

body: JSON.stringify(data),
 headers:{
 'Content-Type': 'application/json'
 }
 })
 if (!response.ok) {
 let body = await response.json();
 throw new SpaceError(body.error);
 }
 }
 catch (err) {
 console.warn("Error posting log to server", err)
 }
}

./index.js

● We are creating a new log entry, so we use
POST.

● Data is sent and received back as JSON.
● We catch an HTTP error and display it on

the console.
● The transaction can be viewed on the

"Network" tab in the dev tools.

Exercise

1) Add a /nasa/asteroids route to the server which GETS the "list of
Asteroids based on their closest approach date" from Nasa's OpenAPI –
for the current day only.

2) Add an async asteroidCheck() function to spaceship.js that queries the
server and fails the launch in case any of the asteroids coming today are
within less than 0.1 astronomical units away. Run the check at the
beginning of the launch sequence.

3) Add /log/filename route to the server that UPDATES the name of the log
file. Test it from the client.

Regarding API access
● Getting an API key to access NASA's OpenAPI is pretty easy, however we must never

store API keys in the client, because they can easily be picked up by any user.
● Therefore we "proxy" the request from the server, and that way we can also return

data that is already formatted for the client's usage.
● However, we must also never store API keys in git, so instead of writing them in

the source file, we define them only locally as an environment variable.
● To define an API key in the server environment, before running the server we run:

export NASA_API_KEY=123456789 (In windows use set instead of export)
● Then, in the Node JS server code we can access that key using the code:

process.env.NASA_API_KEY

Use ES6 Template Strings for constructing
the NASA URL

● ES6 Template Strings allow us to easily construct a string that includes variables.
They are recognized by the ` ` quotes and variables are injected using ${var}.
 For example:

let name = "avner";
let key = "123456";
let url = `http://avner.js.org?name=${name}&key=${key}`

● The url would appear as:
 http://avner.js.org?name=avner&key=123456

Tips
● In order to use fetch in Node, you will have to:

● npm install –save-dev node-fetch
● import fetch from 'node-fetch'

● Getting today's date is done using:
new Date();

● But you will have to format it for NASA's requirements. You can do it with the built-
in functions or use a library like moment.js.

● Don't forget to always try {} and catch {}! If you want to catch, print something and
then have the error propagate up, you can always throw it again!

● Use async/await for every async operation!
● Don't forget that when using fetch, afer let response = await fetch you also need to

let result = await response.json();
● To easily iterate an array in ES6, use for (let object of array) { }
● Contact me if you have any questions.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

