

Contemporary Web Development
Lesson 7

https://www.youtube.com/user/doddlevloggle

https://www.youtube.com/user/doddlevloggle

rest-spaceship-nasa

https://version.aalto.fi/gitlab/cwd/rest-spaceship-nasa

A REST Request

The client / user is pulling data from the server. A
connection is made and released every time there
is a need for data.

But what if we need

● To continuously transfer a stream of data? (For
example – slither.io, cloud speech)

A long POST request? That’s not what the HTTP
protocol was designed for.

https://slither.io/
https://cloud.google.com/speech-to-text/?utm_source=google&utm_medium=cpc&utm_campaign=emea-emea-all-en-dr-bkws-all-all-trial-b-gcp-1003963&utm_content=text-ad-none-any-DEV_c-CRE_171810430203-ADGP_Hybrid+%7C+AW+SEM+%7C+BKWS+~+BMM_1:1_EMEA_EN_ML_Speech+API_speech+to+text+google-KWID_43700017200833243-kwd-70281048505-userloc_9072483&utm_term=KW_%2Bspeech%20%2Bto%20%2Btext%20%2Bgoogle-ST_%2Bspeech+%2Bto+%2Btext+%2Bgoogle&ds_rl=1242853&ds_rl=1245734&ds_rl=1245734&gclid=Cj0KCQiAjZLhBRCAARIsAFHWpbFhaATN0QLlYoRCH_TwgYE0j9l1Z7FFzwuseZgb2v6x8WDmW927J1waAvn6EALw_wcB

But what if we need

● To continuously transfer a stream of data? (For
example – slither.io, cloud speech)

● To PUSH data to the client from the server, instead of
having it pulled (Any chat server, notifications in FB or
Twitter).

The client / user is pulling data from the server. A
connection is made and released every time there
is a need for data.

https://slither.io/
https://cloud.google.com/speech-to-text/?utm_source=google&utm_medium=cpc&utm_campaign=emea-emea-all-en-dr-bkws-all-all-trial-b-gcp-1003963&utm_content=text-ad-none-any-DEV_c-CRE_171810430203-ADGP_Hybrid+%7C+AW+SEM+%7C+BKWS+~+BMM_1:1_EMEA_EN_ML_Speech+API_speech+to+text+google-KWID_43700017200833243-kwd-70281048505-userloc_9072483&utm_term=KW_%2Bspeech%20%2Bto%20%2Btext%20%2Bgoogle-ST_%2Bspeech+%2Bto+%2Btext+%2Bgoogle&ds_rl=1242853&ds_rl=1245734&ds_rl=1245734&gclid=Cj0KCQiAjZLhBRCAARIsAFHWpbFhaATN0QLlYoRCH_TwgYE0j9l1Z7FFzwuseZgb2v6x8WDmW927J1waAvn6EALw_wcB

Previous solutions – Polling / Long Polling

Browser Server

Any data?

And now?

No.

No.

No.No.

And now?
YES!

Browser Server

Any data?
...

….

YES!

Against this is against the standard HTTP. An HTTP
web server is not meant to hold too many parallel
connections.

Web Sockets

The key is in this Upgrade request. After that, the
connection is held and frames are being passed
through the websocket protocol.

Example App -
Collaborative Synthesizer

Choosing a websocket implementation

Socket.IO?

Socket.IO is the most popular implementation, but it
also introduces a lot of overhead.

Fastest implementation

uWS?

Socket.IO is supposedly based on uWS (replaced
engine.io), but with a lot of overhead. When I
searched for more information I found some npm
drama.

NPM Drama

It’s still being continued though.
And is being sponsored by a bitcoin company.

https://github.com/alexhultman/The-Node.js-performance-palette
https://github.com/uNetworking/uWebSockets

Drama-less implementation

ws

https://github.com/websockets/ws

What if things change?
Implementation Abstraction

Whatever library we chose, we want to abstract it so
that it can’t be changed easily. We essentially build
proxy objects,

The OOP Approach :
 Encapsulation

In the OOP approach we create an object/class that
handles the socket opertions, and that object also
has a state.

import WebSocket from 'ws'
export default class SocketServer {
 constructor() {
 this.wss = null;
 observable(this);
 }
 init(server) {
 this.wss = new WebSocket.Server({ server });
 this.wss.on('connection', (ws) => {
 this.trigger("client-connected", ws);
 ws.on('message', (data) {this.trigger("client-

message", ws, data});
 });
 }
 broadcastToEveryoneElse(data, ws) {

...
 }
}

./socket-server.js
import SocketServer from ‘./socket-server’

const server = http.createServer(app).listen(3000);
const socketServer = new SocketServer(server);

socketServer.on(‘connection’, (client) => {
 console.log("Client connected!");
});

socketServer.on(‘message’, (client,data) => {
 console.log("Message from client!!");

socketServer.broadcastToEveryoneElse(
client,
data

);
});

./index.js

Let’s try more a functional approach.
People who argue against OOP claim that you

shouldn’t mix between data and function. Data
goes into functions and is manipulated by them. It’s
arguably easier to maintain/debug ,results in less
code and is faster.

Choose your flavor

In the OOP approach we create an object/class that
handles the socket opertions, and that object also
has a state.

Going Functional
 on the server side

import WebSocket from 'ws'
export function init(server, messageHandler) {
 const wss = new WebSocket.Server({ server });
 wss.on('connection', (ws) => {
 ws.on('message', (data) => {

messageHandler(data, {client: ws, server: wss})})
 });
}
export function broadcastToEveryoneElse(data,
context) {

...
 }
 });
}

./socket-server.js

const server = http.createServer(app).listen(3000);
SocketServer.init(server,onMessage);

function onMessage(data,context) {
SocketServer.broadcastToEveryoneElse(

data,context
);

}

./index.js

There is actually a state, but it’s all handled by the
library. All I am doing is providing functions that
"mediate" between the library and the application.

The code turned out very small and efficient.
The abstraction is also hidden by the "context"

variable that I’m passing around between the
modules.

On the client it gets harder

We have to maintain
an application state

● Keeping track of user inputs (up,down).
● Keeping track of playing oscillators (start,

stop).
● Keeping track of connection to server

(socket)

But I still want to maintain my modules stateless and
functional. For example I want to be able to replace
them on the fly with HMR.

How about an isolated, observable,
mutable state/store.

import observable from './observable-mixin'

export const Events = {}
observable(Events);

export const Synth = {};
export const Socket = {};
export const Input = {};

./state.js

● A separation of
concerns by using
namespaces.

● Data is not shared
between components,
but only flows through
events.

import ReconnectingWebSocket from 'reconnecting-websocket'
import {Socket, Events} from './state'

export function init(url) {
 const socket = new ReconnectingWebSocket(url);
 socket.addEventListener('open', () => {
 Socket.handle = socket;
 });
 socket.addEventListener('close', () => {
 Socket.handle = null;
 });
 socket.addEventListener('message', (msg) => {Events.trigger('socket-message', msg)});
}
export function send(data) {
 if (Socket.Handle) {
 Socket.handle.send(data);
 }
}

./socket-client.js

● The state object is
the "memory" of the
program.

● It also maintains the
event chained, who is
subscribed to whom.

● Communication
between
compomnents is
done only through
events. They modify
their own state and
send and event.

Can it be purely functional?

If instead of modifying the state object, we keep
making new ones and return them. For Observable
we can use the method of chaining callbacks.

Yeah

What’s so good about immutable?

For Javascript it’s mostly about change
detection.

One of the biggest advantage is for concurrency, but
javascript is single threaded.

Exercise

When your server components, are stateless, you
can easily share the load between them, do a
failover, move them around etc, with no need to do
any replication.

Modify the collab-synth so that each user will get
their own color when playing on the keys.

● Add a new client component named Piano, with its own
namespace in the State object. It will export the functions:
● noteOn(clientId, element)
● noteOff(clientId, element)

● These functions will color the piano keyboard in a color that is
random and unique for each client.

● In the server, you need to generate a client ID for each connection,
and send it with the socket events. You can use a module leverl ID
Counter.

● For now, no need to support more than 10 client connections.

NGrok

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

