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Users of factor and principal components analyses are
required to make decisions on a number of technical is-
sues, including the number factors to retain, extraction
and rotation techniques, and the procedure for computing
factor scores. The choices and controversies involved in
each step have probably led many to shy away from the
procedure or to be suspicious of its results. It seems only
logical to assume that the many possible routes through
the decision tree result in differing results for the same
data. However, the crucial decision is that of determining
how many factors to retain. Assorted decisions on the
other issues generally produce similar results when the
optimal number of factors is specified (Zwick & Velicer,
1986). In addition to conflicting findings, other problems
also emerge when nonoptimal numbers of factors are ex-
tracted. Under-extraction compresses variables into a
small factor space, resulting in a loss of important infor-
mation, a neglect of potentially important factors, a dis-
torted fusing of two or more factors, and an increase in
error in the loadings. Over-extraction diffuses variables
across a large factor space, potentially resulting in factor
splitting, in factors with few high loadings, and in re-
searchers’ attributing excessive substantive importance to
trivial factors (see Wood, Tataryn, & Gorsuch, 1996;
Zwick & Velicer, 1986, for reviews).

Users who are concerned with extracting the optimal
number of factors are nevertheless confronted with a va-
riety of decision rules that have been described in the lit-
erature (see Coovert & McNelis, 1988; Floyd & Widaman,
1995; Gorsuch, 1997; Merenda, 1997; Tinsley & Tinsley,
1987; Turner, 1998; and Zwick & Velicer, 1986, for re-
views). The discussions are sometimes technical, and

many users simply trust the default decision rule imple-
mented in their statistical software packages (typically the
eigenvalues-greater-than-one rule). Other users examine
scree plots of eigenvalues, which are also available in pop-
ular statistical packages (such as SPSS and SAS), before
making their decisions. Unfortunately, these two highly
popular decision rules are problematic. The eigenvalues-
greater-than-one rule typically overestimates, and some-
times underestimates, the number of components (Zwick
& Velicer, 1986). This overly mechanical and somewhat
arbitrary rule also does not always result in components
that are reliable, as was originally believed (Cliff, 1988).
The scree test has been a strongly promoted alternative rule
of thumb (Cattell & Vogelmann, 1977). But it involves eye-
ball searches of plots for sharp demarcations between the
eigenvalues for major and trivial factors. In practice, such
demarcations do not always exist or there may be more
than one demarcation point. Not surprisingly, the relia-
bility of scree plot interpretations is low, even among ex-
perts (Crawford & Koopman, 1979; Streiner, 1998).

Fortunately, there is increasing consensus among sta-
tisticians that two less well-known procedures, parallel
analysis and Velicer’s minimum average partial (MAP)
test, are superior to other procedures and typically yield
optimal solutions to the number of components problem
(Wood et al., 1996; Zwick & Velicer, 1982, 1986). These
procedures are statistically based, rather than being me-
chanical rules of thumb. In parallel analysis, the focus is
on the number of components that account for more vari-
ance than the components derived from random data. In
the MAP test, the focus is on the relative amounts of sys-
tematic and unsystematic variance remaining in a corre-
lation matrix after extractions of increasing numbers of
components. The popular SPSS and SAS statistical soft-
ware packages do not permit users to perform these rec-
ommended tests. However, the packages do permit users
to write their own programs. The present paper describes
how parallel analyses and the MAP test can be readily con-
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Popular statistical software packages do not have the proper procedures for determining the number
of components in factor and principal components analyses. Parallel analysis and Velicer’s minimum
average partial (MAP) test are validated procedures, recommended widely by statisticians. However,
many researchers continue to use alternative, simpler, but flawed procedures, such as the eigenvalues-
greater-than-one rule. Use of the proper procedures might be increased if these procedures could be
conducted within familiar software environments. This paper describes brief and efficient programs
for using SPSS and SAS to conduct parallel analyses and the MAP test.
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ducted within these familiar computing environments.
The two procedures have been used in both principal
components and common factor analyses, and the com-
putational procedures described in the literature (and in
this paper) are the same in both cases. This is because re-
searchers must determine how many components or fac-
tors to extract before they begin their factor extractions.
The computations for the present programs are performed
within the matrix processing environments that are pro-
vided by SPSS (Matrix–End Matrix) and SAS (Proc IML).
The Matrix–End Matrix procedure is a standard part of
SPSS packages, whereas Proc IML is typically a separate
module in SAS.

The MAP Test
Velicer’s (1976) MAP test involves a complete princi-

pal components analysis followed by the examination of
a series of matrices of partial correlations. Specifically,
on the first step, the first principal component is par-
tialed out of the correlations between the variables of in-
terest, and the average squared coefficient in the off-
diagonals of the resulting partial correlation matrix is
computed. On the second step, the first two principal
components are partialed out of the original correlation
matrix and the average squared partial correlation is
again computed. These computations are conducted for k
(the number of variables) minus one steps. The average
squared partial correlations from these steps are then
lined up, and the number of components is determined by
the step number in the analyses that resulted in the lowest
average squared partial correlation. The average squared
coefficient in the original correlation matrix is also com-
puted, and if this coefficient happens to be lower than
the lowest average squared partial correlation, then no
components should be extracted from the correlation ma-
trix. Statistically, components are retained as long as the
variance in the correlation matrix represents systematic
variance. Components are no longer retained when there
is proportionately more unsystematic variance than sys-
tematic variance.

SPSS commands for the MAP test appear in Appen-
dix A, and SAS commands appear in Appendix B. Users
simply read in their data as they normally do, request a
matrix of correlations or principal components analysis
of the variables of interest, and specify that the correlation
matrix be saved in a matrix file. The programs then read
the saved matrix file, conduct the necessary analyses, and
print the results. Sample output from using the SPSS pro-
gram in Appendix A on data provided by Harman (1967,
p. 80) appears in Appendix E. Harman’s data were used
in this example because they were also analyzed by
Velicer (1976). The data were eight physical measurement
variables (e.g., height, weight) obtained from 305 chil-
dren. The squared correlation for “Step 0” in the output is
the average squared off-diagonal correlation for the un-
partialed correlation matrix. It is even possible to run the
MAP program with a single command. For example, if
the SPSS Matrix–End Matrix statements were saved in a
file called C:\velicer.map, then the following commands

would compute the correlation matrix and run the MAP
program:

corr var1 to var10 / matrix out ('C:\datafile' ) / missing = listwise.

include file = 'C:\velicer.map '.

In SAS, this would be accomplished by saving the pro-
gram as a module and running it by using a CALL MODULE

statement. It is also possible (and very simple) to enter a
correlation matrix into the matrix processing program
directly, instead of having the program read a saved ma-
trix of correlations. For example, in SPSS one would use
the COMPUTE statement from the Matrix–End Matrix pro-
cedure instead of the MGET statement that appears in Ap-
pendix A.

Parallel Analysis
The second recommended procedure for deciding on

the number of components involves extracting eigenval-
ues from random data sets that parallel the actual data
set with regard to the number of cases and variables. For
example, if the original data set consists of 305 observa-
tions for each of 8 variables, then a series of random data
matrices of this size (305 � 8) would be generated, and
eigenvalues would be computed for the correlation ma-
trices for the original data and for each of the random data
sets. The eigenvalues derived from the actual data are then
compared to the eigenvalues derived from the random
data. In Horn’s (1965) original description of this proce-
dure, the mean eigenvalues from the random data served
as the comparison baseline, whereas a currently recom-
mended practice is to use the eigenvalues that correspond
to the desired percentile (typically the 95th) of the dis-
tribution of random data eigenvalues (Cota, Longman,
Holden, Fekken, & Xinaris, 1993; Glorfeld, 1995; al-
though see Cota, Longman, Holden, & Fekken, 1993, and
Turner, 1998). Factors or components are retained as long
as the ith eigenvalue from the actual data is greater than
the ith eigenvalue from the random data.

This computationally intensive procedure for determin-
ing the number of components can be performed surpris-
ingly quickly on modern personal computers. SPSS com-
mands for parallel analysis appear in Appendix C, and SAS
commands appear in Appendix D. The user simply speci-
fies the number of cases, variables, data sets, and the de-
sired percentile for the analysis at the start of the program.
Unlike the MAP program, the commands in Appendices C
and D do not read in the user’s correlation matrix (although
it would be a simple matter to have the programs do so).
The user’s correlation matrix is left out of the analyses to
permit greater flexibility in use of the programs.

Sample output from using the SPSS program in Ap-
pendix C for random data that parallel Harman’s (1967,
p. 80) data—that is, for 305 cases and 8 variables—is pro-
vided in Appendix E. Parallel analysis involves comparing
the actual eigenvalues with the random data eigenvalues.
The eigenvalues derived from Harman’s actual data were
listed by the MAP program (see Appendix E) and can
otherwise be obtained from regular factor or principal
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components analysis procedures. In the sample output, it
is clear that the first two eigenvalues from the actual data
are larger than the corresponding first two 95th percentile
(and mean) random data eigenvalues. However, the third
eigenvalue from the actual data is less than the third 95th
percentile (and mean) random data eigenvalue. This in-
dicates that two components should be retained.

In all parallel analyses focusing on a chosen percentile
of the distributions of random data eigenvalues, consid-
eration must be given to the relationship between the cho-
sen percentile value and the number of random data sets
generated. The multiplication of the chosen percentile
(e.g., 95) by the number of data sets, divided by 100,
should result in an integer [e.g., (95 * 1000) / 100 = 950].
This is because the program searches the distribution of
eigenvalues (for a given root) for the eigenvalue whose
rank order corresponds to the specified percentile, based
on the number of random data sets generated. (In the ex-
ample above, the program searches for the 950th largest
eigenvalue in the set of 1,000.) If the user’s specifications
translate into rank orders that are not integers, the program
rounds the computed rank order to the closest integer.

The processing time required by the SPSS parallel
analysis program, running on a 233-MHz personal com-
puter, was recorded for a number of data specifications,
with the results shown in Table 1 (in minutes and seconds).

All parallel analysis programs use random number gen-
erators, and different programs or even different runs of
the same program may produce slight differences in the
results (e.g., a .04 difference in the 95th percentile eigen-
values from one run to another). This is due to differences
in the random number generators and/or differences in the
seeds that are used by the random number generators.
The variation in the results becomes increasingly small
and essentially disappears as the number of random data
sets increases. In cases where a random data eigenvalue
is very similar in magnitude to the eigenvalue for actual
data, it is recommended that the parallel analysis be run
again using a large number of data sets for more precise
and reliable results.

The SPSS and SAS random number generators have
been deemed “safe” on the basis of tests conducted by
Onghena (1993). The present SAS parallel analysis pro-
gram samples from normal parent distributions. The
SPSS program samples from uniform parent distributions
because a normal random deviate facility is presently not
available in the SPSS Matrix–End Matrix environment.

However, the uniform deviates generated in the SPSS pro-
gram are converted to standard normal deviates using the
Box–Muller algorithm (see Brysbaert, 1991, and the
COMPUTE X = statement in Appendix C).

Parallel analyses and the MAP test typically result in the
same decision regarding the number of components to re-
tain, as they did for Harman’s data (1967, p. 80; see Ap-
pendix E). However, researchers have been encouraged to
run both tests because identical results do not always
emerge (Zwick & Velicer, 1986). When differences do
emerge, the number of random data sets in the parallel
analysis should be increased, and the average squared cor-
relations from the MAP test should be scrutinized for close
calls. The two procedures complement each other nicely, in
that the MAP tends to err (when it does err) in the direction
of underextraction, whereas parallel analysis tends to err
(when it does err) in the direction of overextraction. Optimal
decisions are thus likely to be made after the results of both
analytic procedures have been considered.

FORTRAN programs for conducting parallel analysis
and the MAP test have been reported in the literature
(Longman, Cota, Holden, & Fekken, 1989; Reddon, 1985).
A parallel analysis program for personal computers is
also described in a recent article in this journal (Kaufman
& Dunlap, 2000). The present programs give results iden-
tical to the results from previous programs. Their primary
benefit is their likely convenience to many researchers.
The programs are brief and simple to use, and they run ef-
ficiently in the familiar computing environments of popu-
lar statistical packages. It is to be hoped that these features
will facilitate the use of valid procedures for determining
the number of components. It was previously much more
practical for factor analysts to continue using problematic
procedures, but this is no longer the case.

Program Availability
The programs may be downloaded from the following

internet address: http://flash.lakeheadu.ca /~boconno2/
nfactors.html. The programs may also be obtained by e-
mail from the author at: brian.oconnor@lakeheadu.ca,
or by sending a stamped, self-addressed disk mailer to
Department of Psychology, Lakehead University, 955
Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
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APPENDIX A
SPSS Syntax for Velicer’s

Minimum Average Partial (MAP) Test
correlation var1 to var25 / matrix out ('C:\data.cor ') / missing = listwise.
factor var= var1 to var25 / matrix out (cor = 'C:\data.cor').

matrix.

mget /type= corr /file='C:\data.cor' .

call eigen (cr,eigvect,eigval).
compute loadings = eigvect * sqrt(mdiag(eigval)).
compute fm = make(nrow(cr),2,-9999).
compute fm(1,2) = (mssq(cr) - ncol(cr)) / (ncol(cr)*(ncol(cr)-1))).
loop #m = 1 to ncol(cr) - 1.
compute a = loadings(:,1:#m).
compute partcov = cr - (a * t(a)).
compute d = mdiag( 1 / (sqrt(diag(partcov))) ).
compute pr = d * partcov * d.
compute fm(#m+1,2) = (mssq(pr) - ncol(cr)) / (ncol(cr)*(ncol(cr)-1))).
end loop.

* identifying the smallest fm value & its location (= the # of factors).
compute minfm = fm(1,2).
compute nfactors = 0.
loop #s = 1 to nrow(fm).
compute fm(#s,1) = #s -1.
do if ( fm(#s,2) < minfm ).
compute minfm = fm(#s,2).
compute nfactors = #s - 1.
end if.
end loop.

print eigval /title="Eigenvalues".
print fm /title="Velicer’s Average Squared Correlations".
print minfm /title="The smallest average squared correlation is".
print nfactors /title="The number of components is".

end matrix.
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APPENDIX B
SAS Syntax for Velicer’s Minimum Average Partial (MAP) Test

proc corr data = rawdata outp = cormatrix;
run;

options nocenter nodate nonumber linesize=90; title;
proc iml;

use cormatrix;
read all var _num_ into whole;
cr = whole[4:nrow(whole),];

call eigen (eigval,eigvect,cr);
loadings = eigvect * sqrt(diag(eigval));
fm = j(nrow(cr),2,-9999);
fm[1,2] = (ssq(cr) - ncol(cr))/(ncol(cr)*(ncol(cr)-1));
do m = 1 to ncol(cr) - 1;
a = loadings[,1:m];
partcov = cr - (a * t(a));
d = diag( 1 / (sqrt(vecdiag(partcov))) );
pr = d * partcov * d;
fm[m+1,2] = (ssq(pr)-ncol(cr)) / (ncol(cr)*(ncol(cr)-1));
end;

/* identifying the smallest fm value & its location (= the of factors) */
minfm = fm[1,2];
nfactors = 0;
do s = 1 to nrow(fm);
fm[s,1] = s - 1;
if ( fm[s,2] < minfm ) then do;
minfm = fm[s,2];
nfactors = s - 1;
end;

end;
print, "Eigenvalues", eigval;
print, "Velicer’s Average Squared Correlations", fm[format=15.9];
print, "The smallest average squared correlation is", minfm;
print, "The number of components is", nfactors;

quit;

APPENDIX C
SPSS Syntax for Parallel Analysis

set mxloops=9000 length=none printback=none width=80 seed = 1953125.
matrix.

* enter your specifications here.
compute Ncases = 500. 
compute Nvars = 50.
compute Ndatsets = 1000.
compute percent = 95.

* computing random data correlation matrices & eigenvalues.
compute evals = make(nvars,ndatsets,-9999).
compute nm1 = 1 / (ncases-1).
loop #nds = 1 to ndatsets.
compute x = sqrt(2 * (ln(uniform(ncases,nvars)) * -1) ) &*

cos(6.283185 * uniform(ncases,nvars) ).
compute vcv = nm1 * (sscp(x) - ((t(csum(x))*csum(x))/ncases)).
compute d = inv(mdiag(sqrt(diag(vcv)))).
compute evals(:,#nds) = eval(d * vcv * d).
end loop.

* identifying the eigenvalues corresponding to the desired percentile.
compute num = rnd((percent*ndatsets)/100).
compute results = { t(1:nvars), t(1:nvars), t(1:nvars) }.
loop #root = 1 to nvars.
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APPENDIX D
SAS Syntax for Parallel Analysis

options nocenter nodate nonumber linesize=90; title;

proc iml;
seed = 1953125;

/* enter your specifications here */
Ncases = 305;
Nvars = 8;
Ndatsets = 1000;
percent = 95;

/* computing random data correlation matrices & eigenvalues */
evals = j(nvars,ndatsets,-9999);
nm1 = 1 / (ncases-1);
do nds = 1 to ndatsets;
x = normal( j(ncases,nvars)) ;
vcv = nm1 * (t(x)*x - ((t(x[+,] )*x[+,] )/ncases));
d = inv(diag(sqrt(vecdiag(vcv))));
evals[,nds] = eigval(d * vcv * d);
end;

/* identifying the eigenvalues corresponding to the desired percentile */
num = round((percent*ndatsets)/100);
results = j(nvars,3,-9999);
s = 1:nvars;
results[,1] = t(s);
do root = 1 to nvars;
ranks = rank(evals[root,] );
do col = 1 to ndatsets;
if (ranks[1,col] = num) then do;
results[root,3] = evals[root,col];
col = ndatsets;
end;
end;
end;
results[,2] = evals[,+] / ndatsets;

specifs = (ncases // nvars // ndatsets // percent);
rlabels = {"Ncases" "Nvars" "Ndatsets" "Percent"};
print, "Specifications for this Run:", specifs[rowname=rlabels];

clabels={"Root" "Means" "Prcntyle"};
print, "Random Data Eigenvalues", results[colname=clabels format=15.9];
quit;

APPENDIX C (Continued)
compute ranks = rnkorder(evals(#root,:)).
loop #col = 1 to ndatsets.
do if (ranks(1,#col) = num).
compute results(#root,3) = evals(#root,#col).
break.
end if.
end loop.
end loop.
compute results(:,2) = rsum(evals) / ndatsets.

compute specifs = {ncases; nvars; ndatsets; percent}.
print specifs /title="Specifications for this Run:"
/rlabels="Ncases" "Nvars" "Ndatsets" "Percent".

print results /title="Random Data Eigenvalues"
/clabels="Root" "Means" "Prcntyle".

end matrix.
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APPENDIX E
Sample Output

SPSS Output from Velicer’s MAP Test

Eigenvalues
4.672880
1.770983
.481035
.421441
.233221
.186674
.137304
.096463

Velicer’s Average Squared Correlations
.000000 .312475

1.000000 .245121
2.000000 .066445
3.000000 .127594
4.000000 .204203
5.000000 .271829
6.000000 .434591
7.000000 1.000000

The smallest average squared correlation is
.066445

The number of components is
2

SPSS Output from a Parallel Analysis

Specifications for this Run:
Ncases 305
Nvars 8
Ndatsets 1000
Percent 95

Random Data Eigenvalues
Root Means Prcntyle

1.000000 1.245463 1.325851
2.000000 1.154223 1.212952
3.000000 1.083692 1.128706
4.000000 1.022316 1.063478
5.000000 .965652 1.004431
6.000000 .908654 .950213
7.000000 .846994 .895851
8.000000 .773006 .831101
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