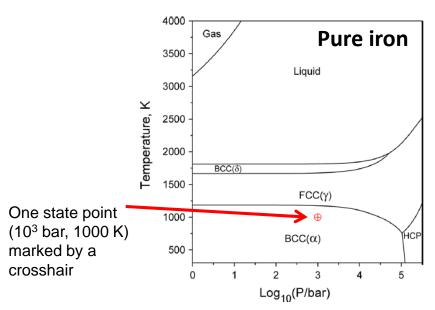
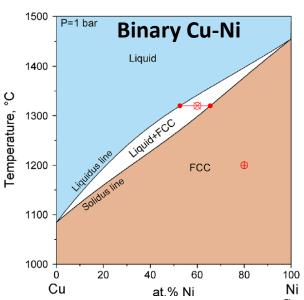

Lecture 5: Phase Diagrams and crystal growth

- Phase diagrams
 - Phase rule
 - One-component systems (unary)
 - Two-component systems (binary)
 - Three-component systems (ternary)
- Single crystal growth
 - Czochralski method
 - Bridgman and Stockbarger methods
 - Zone melt methods
 - Flux methods


Temperature



13 gram single crystal of Ba₈Ga₁₆Ge₃₀ (Christensen et al. *Nature Mater.* **2008**, *7*, 811)

Phase diagrams

- "Phase diagrams are the beginning of wisdom not the end of it" William Hume-Rothery (English metallurgist and materials scientist)
- For a comprehensive introduction to phase diagrams, see the following paper in MyCourses -> Materials -> Scientific papers:
 - Schmid-Fetzer 2014 Phase Diagrams The Beginning of Wisdom
- Phase diagrams are a road map to understand the conditions for phase formation or transformation in any material system
- One can use phase diagrams as the starting point for materials design and process optimization

2

Figures: <u>JPEDAV (2014) 35:735-760</u>.

Equilibrium

- In using phase diagrams, it is important to understand what is meant by thermodynamic equilibrium
- The equilibrium state is always the state with the lowest Gibbs free energy G
 - Other minima may exist but they are not as deep as the equilibrium well
 - If there is a considerable energy barrier involved in moving from a metastable state to the stable state, the reaction product may stay in its metastable state
- **Important**: phase diagrams give no information concerning **kinetics** of reactions or transformations!
- A good example of a thermodynamically metastable but kinetically stable state is the metastability of diamond (C) relative to graphite (C) at room temperature

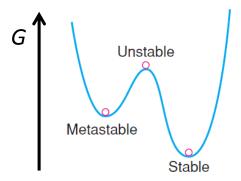
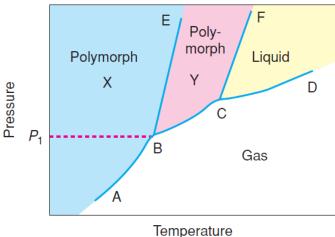


Figure 7.2 Schematic diagram showing stable, unstable and metastable conditions.

Definitions

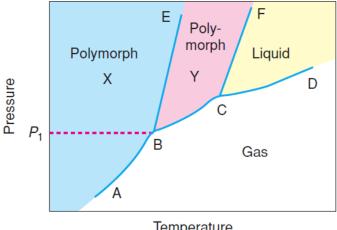
- Phase is a physically separable part of a system with distinct physical and chemical properties.
- A **system** consists of one or more phases
- For example, NaCl-H₂O system:
 - If all of the salt is dissolved: one phase (salt solution).
 - If all salt is not dissolved: 2 phases, solid NaCl and solution.
 - If system is heated under sealed conditions: 3 phases (solid + solution + gas)
- Each phase in the system is composed of one or more components.
 - The NaCl-H₂O system has two components NaCl and H₂O (binary system)
 - All other combinations can be described with these formula.
- Pure water would be an unary (one-component) system
- Three components -> ternary system
- Four components -> quaternary system

Gibbs Phase Rule


- Applies to non-reactive multi-component heterogeneous systems in thermodynamic equilibrium
 - Pressure p and temperature T are constant in the system
 - The chemical potentials of the components are the same in each phase
- F = C P + 2
 - P is the number of phases present in equilibrium
 - C is the number of components needed to describe the system
 - F is the number of degrees of freedom or independent variables taken from temperature, pressure, and composition of the phases present
- In many cases, pressure is constant and the *condensed phase rule* is used:
 - F = C P + 1

Phase rule in practice

- 1. A solid solution in the system $Al_2O_3-Cr_2O_3$ (C=2) has one composition variable because the $Al_2O_3:Cr_2O_3$ ratio can be varied
 - If a sample has x% of Al₂O₃, then the Cr₂O₃ content is fixed as (100 x)%
 - The temperature of the single-phase solid solution can also be varied
 - $F = C P + 1 = 2 1 + 1 = 2 (Al_2O_3:Cr_2O_3 \text{ ratio and } T)$
 - If pressure is taken into account, F = 3
- 2. A partially melted solid (e.g. ice) in a **one-component** system (e.g. H₂O), in equilibrium at its melting point (ignoring pressure)
 - -F = C P + 1 = 1 2 + 1 = 0
 - If the temperature changes, the number of phases must change
- 3. Boiling water = $H_2O(I)$ and $H_2O(g)$ in equilibrium (C=1)
 - F = C P + 2 = 1 2 + 2 = 1
 - Boiling point depends on vapor pressure (only one degree of freedom).
 - For example, Mount Everest: 8848 m; p = 34 kPa -> boiling point of $H_2O=71$ °C


One-component systems (1)

- The composition is fixed at C = 1 and the independent variables are T and p
 - $-F = C P + 2 \le F + P = 3$
 - The system is **bivariant** (F = 2) if one phase is present, **univariant** (F = 1) if two are present and **invariant** (F = 0) if three are present
- In the schematic example below, the possible phases are two solid-state polymorphs (X and Y), liquid, and gas
- When P = 1, F = 2 and each phase occupies an area or **field** on the diagram
 - Both p and T are needed to describe a point in one of these fields

One-component systems (2)

- Each single-phase region is separated from neighboring single-phase regions by univariant curves (P = 2 and F = 1): If p is fixed then T is fixed and vice versa
- The univariant curves on the diagram represent the following equilibria:
 - BE transition temperature between polymorphs X and Y (the change of transition temperature with pressure)
 - FC change of melting point of polymorph Y with pressure
 - AB, BC sublimation curves for X and Y, respectively
 - CD change of boiling point of liquid with pressure
- On heating, X can either sublime at a pressure below P_1 or transform to polymorph Y at pressures above. It **cannot** melt directly.
- Two invariant points B and C for which P = 3 and F = 0 are also called *triple points*.

Temperature

Temperature 350 K 400 K 0 K 50 K 100 K 150 K 200 K 250 K 300 K 450 K 500 K 550 K 600 K 650 K H_2O 1 TPa 10 Mbar X (hexagonal) 100 K, 62 GPa 100 GPa⁻ 1 Mbar VIII VII 10 GPa 100 kbar 278 K, 2.1 GPa 355.00 K, 2.216 GPa 218 K, 620 MPa 1 GPa 10 kbar 272.99 K. 632.4 MPa 248.85 K, 344.3 MPa of 256.164 K, 350.1 MPa 251.165 K, 209.9 MPa 238.5 K, 212.9 MPa 100 MPa Critical point 1 kbar 647 K, 22.064 MPa Solid Liquid 10 MPa 100 bar 1 MPa 10 bar ΧI lc lh 100 kPa 1 bar (ortho- Freezing point at 1 atm **Boiling point at 1 atm** rhombic) 273.15 K, 101.325 kPa 373.15 K, 101.325 kPa 10 kPa 100 mbar 1 kPa 10 mbar Solid/Liquid/Vapour triple point 273.16 K, 611.657 Pa 100 Pa 1 mbar Vapour 10 Pa 100 ubar

-50 °C

0°C

50°C

100 °C 150 °C

200 °C

250 °C

300 °C 350 °C △

Figure: Wikipedia

1 Pa

-250 °C -200 °C -150 °C -100 °C

SiO₂

- Silica is the main component of many ceramic materials in addition to being the most common oxide in the Earth's crust
- Complex polymorphism at atmospheric pressure:

$$\alpha$$
-quartz $\xrightarrow{573\,^{\circ}\text{C}} \beta$ -quartz $\xrightarrow{870\,^{\circ}\text{C}} \beta$ -tridymite $\xrightarrow{1470\,^{\circ}\text{C}} \beta$ -cristobalite $\xrightarrow{1710\,^{\circ}\text{C}} \beta$ liquid

With increasing pressure, the polymorphs with higher density are favored

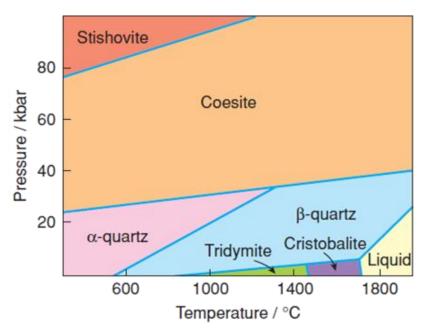
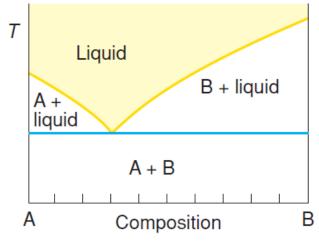


Table 7.1 Densities of SiO₂ polymorphs

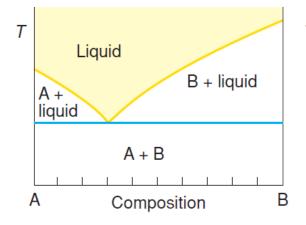

Polymorph	Density/g cm ⁻³
Low tridymite	2.265
Low cristobalite	2.334
Low quartz	2.647
Coesite	3.00
Stishovite	4.40

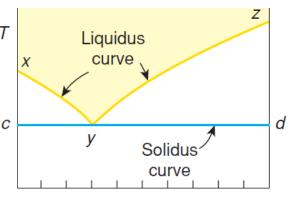
Binary eutectic system (1)

- Binary systems (C = 2) have 3 independent variables: p, T and composition
- Let's consider condensed phases (ignoring pressure): F = C P + 1 = 3 P
 - Invariant point (F = 0) occurs when three phases coexist, a univariant curve for two phases and a bivariant condition for one phase
- Conventionally, temperature is the vertical axis and composition is the horizontal axis in binary phase diagrams
- The simplest two-component condensed system is the **eutectic** system below
 - Occurs whenever two non-interacting solids, A and B, that can melt without decomposition, are mixed

No compounds or solid solutions are formed but the mixtures melt at lower

temperatures than either pure solid




Binary eutectic system (2)

- The **liquidus** curve (xyz) gives the highest temperatures at which crystals can exist
 - Shows the effect of soluble impurities on the melting points of pure compounds
 - Familiar practical example: In the binary system H₂O−NaCl, addition of NaCl lowers the melting point of ice as the system contains an eutectic at −21°C.
- The **solidus** *curve* (*cyd*) gives the lowest temperatures at which liquids can exist
- Point y is an invariant point at which three phases, A, B and liquid, coexist

$$- F = C - P + 1 = 2 - 3 + 1 = 0$$

- Called the eutectic point
- The lowest temperature at which a composition can be completely liquid

Binary system with a compound (1)

- A stoichiometric binary compound such as AB is represented by a vertical line. This shows the range of temperatures over which it is stable
- Compound AB melts **congruently** in Fig. 7.8(a) because it changes directly from solid AB to liquid of the same composition at temperature T_3 .
 - Important for understanding crystallization paths

Ref: West p. 338

• In Fig. 7.8(c), compound AB melts **incongruently** at T_2 to give a mixture of A and liquid of composition x

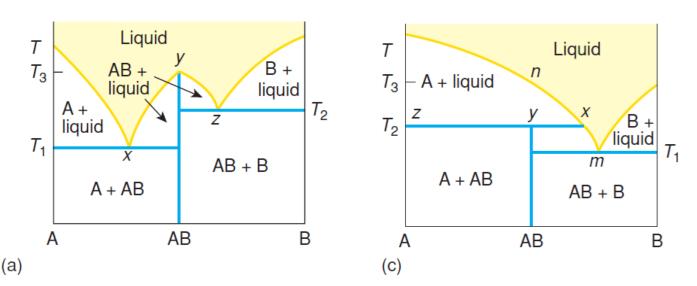


Figure 7.8 Binary systems showing a compound AB melting congruently (a) and incongruently (c)

Binary system with a compound (2)

- Sometimes, compounds decompose before melting, as shown for AB in Fig. 7.9(a)
 - In this case, compound AB has an upper limit of stability
 - At temperature T_1 it disproportionates into a mixture of A and B;
 - At higher temperatures the system is simple eutectic in character
- There are also systems containing compounds with a lower limit of stability
 - Below a certain temperature, AB decomposes into a mixture of A and B

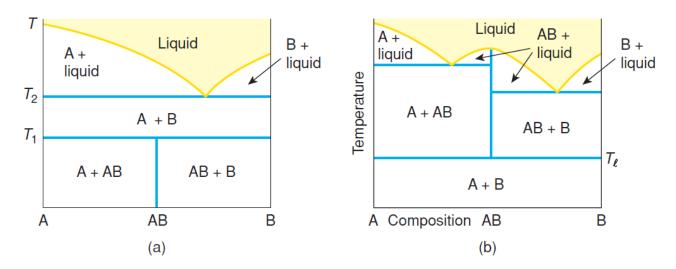
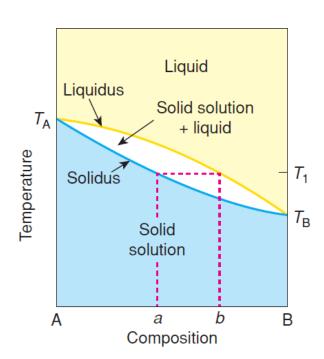
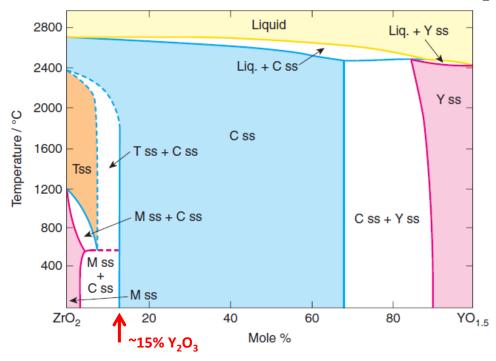



Figure 7.9 Binary system showing compound AB with (a) an upper limit of stability and (b) a lower limit of stability.

Binary systems with solid solutions

- The simplest solid solution system is one that shows complete miscibility in both solid and liquid states
- The melting point of one end member, A, is depressed by addition of the other end member, B
- The liquidus and solidus are smooth curves which meet only at the end-member compositions A and B
- At low temperatures, a single-phase solid solution exists and is bivariant (C = 2, P = 1, and F = C P + 1 = 2)
- At high temperatures, a single-phase liquid solution exists and is similarly bivariant
- At intermediate temperatures, a two-phase region of solid solution + liquid exists

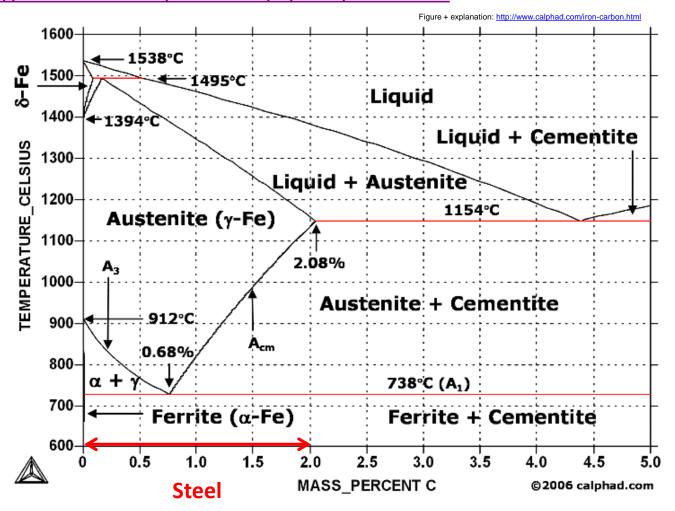

15

Yttria-stabilized Zirconia (YSZ)

• Zirconia, ZrO_2 , is potentially a very useful ceramic material with a high melting point of ~2700 °C but on cooling it undergoes a series of phase transitions:

```
cubic (fluorite) \xrightarrow{2400\,^{\circ}\text{C}} tetragonal \xrightarrow{1050\,^{\circ}\text{C}} monoclinic (baddeleyite)
```

- The tetragonal to monoclinic transition is associated with an increase in unit cell volume by \sim 9% -> ceramic bodies fabricated at high T shatter on cooling
- The transitions can be avoided by creating a solid solution ZrO₂-Y₂O₃



Ref: West p. 355

Figure 7.28 ZrO_2 – Y_2O_3 phase diagram. M, T and C refer to the monoclinic, tetragonal and cubic polymorphs of zirconia, and their solid solutions, ss. Y = yttria, Y_2O_3 .

Fe-C phase diagram

- "The most important phase diagram in the history of civilization"(?)
- For some hands-on exercises on phase diagrams, see: http://www.southampton.ac.uk/~pasr1/index.htm

Ternary phase diagrams

- Ternary phase diagrams are much more complicated than binary diagrams
- One reasonable visualization is to show the diagram just for one temperature

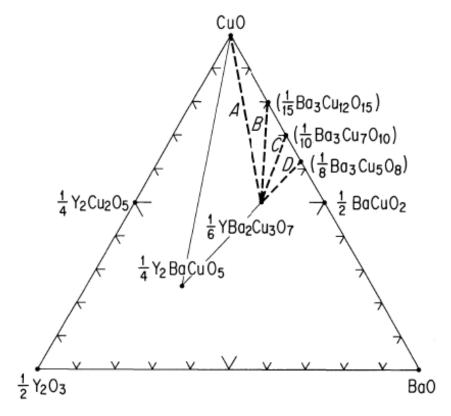
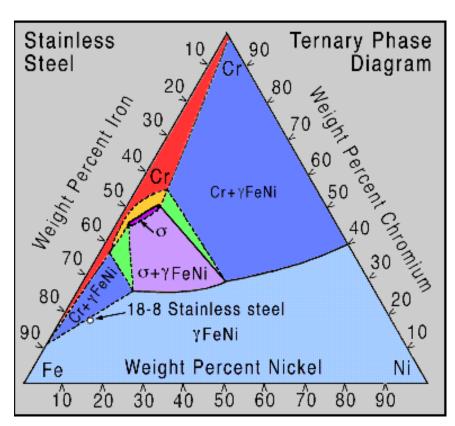



Fig. 1. Y₂O₃-BaO-CuO ternary phase diagram. The phase-equilibrium measurements were carried out along A, B, C and D directions (shown by bold dots). The coefficients before the molecular formulae are for normalization.

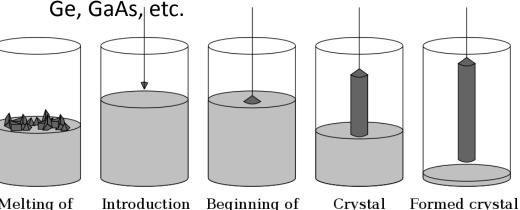
Phase diagram resources

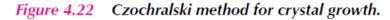
- Resources for phase diagrams (require subscription):
 - https://phaseonline.ceramics.org
 - https://www.asminternational.org/materials-resources/online-databases
- <u>Journal of Physical and Chemical Reference Data</u> is a very good resource
 - MyCourses -> Materials -> Phase diagrams includes few useful papers

Stainless steel phase diagram at 900°C (ASM 1-27)

Crystal Growth

- Crystals may be grown from vapor, liquid or solid phases
 - Usually, only the vapor and liquid routes give crystals of sufficient size for applications or physical property measurements
 - The concepts of congruent and incongruent melting are important for understanding crystallization pathways (see the slide "Binary system with a compound (1)" above)
- Czochralski method
- Bridgman and Stockbarger methods
- Zone melting method
- Precipitation from solution or melt: flux method




13 gram single crystal of Ba₈Ga₁₆Ge₃₀ (Christensen et al. *Nature Mater.* **2008**, *7*, 811)

Czochralski method

- A crystal is grown from a melt of the same composition by starting with a seed crystal in contact with the melt, whose temperature is maintained slightly above its melting point
- As the seed is gradually pulled out of the melt, the melt solidifies on the surface of the seed to give a rod-shaped crystal in the same crystallographic orientation as the original seed
- The melt and growing crystal are usually rotated counter-clockwise during pulling

Widely used for semiconducting materials: Si,

Ref: West p. 226

21

Pulling

direction

Growing crystal

Crucible

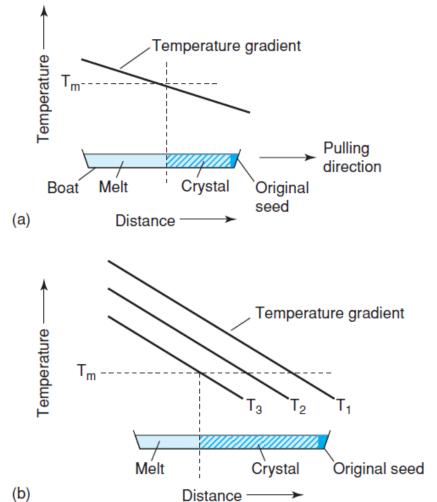
Melt

Figure: Wikipedia

Heater coil

growth

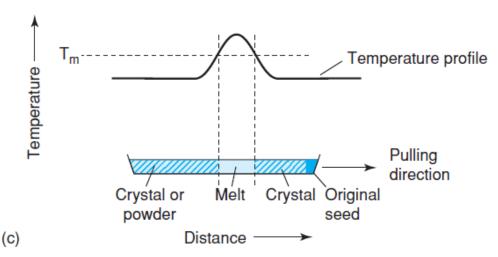
Beginning of the crystal


Crystal pulling

with a residue

of melted silicon

Bridgman and Stockbarger methods


- Based on the solidification of a stoichiometric melt
- Crystallisation is controlled by passing the melt through a temperature gradient such that crystallization occurs at the cooler end
- This is achieved in the Stockbarger method by arranging displacement of the melt within a temperature gradient
- In the Bridgman method, the melt is inside a temperature gradient furnace and the furnace is gradually cooled so that solidification begins at the cooler end
- In both methods, it is advantageous to use a seed crystal

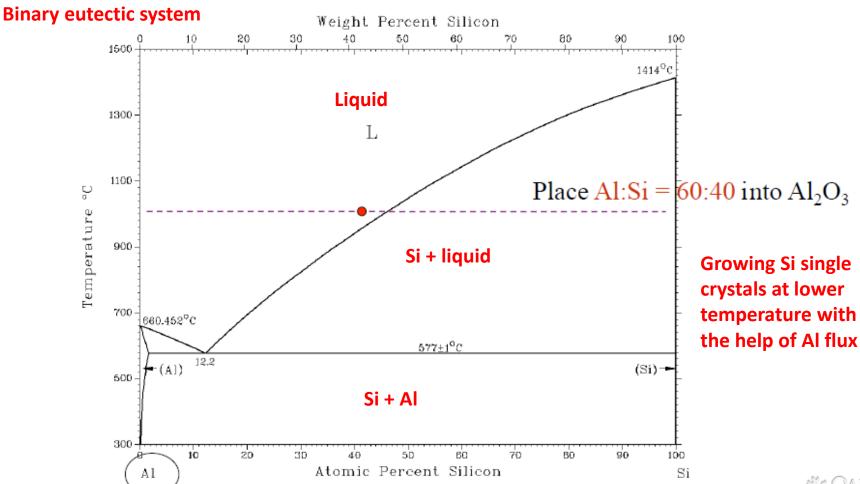
- (a) Stockbarger method. T_m = crystal melting point.
- (b) Bridgman method

Zone melting method

- Related to the Stockbarger method but the thermal profile through the furnace is such that only a small part of the charge is molten at any one time
- Initially that part of the material in contact with the seed crystal is melted
- As the boat is pulled through the furnace, oriented solidification onto the seed occurs and, at the same time, more of the charge melts
- A well-known method for purification of solids, the zone-refining technique
- Makes use of the principle that impurities usually concentrate in the liquid rather than in the solid phase
- Impurities are "swept out" of the crystal by the moving molten zone
- State-of-the-art techniques: **Optical floating zone** (see *e.g.* S. M. Koohpayeh, D. Fort, J. S. Abell, *Prog. Cryst. Growth Charact. Mater.* **2008**, *54*, 121-137 (DOI))

Ref: West p. 228

23


Precipitation from solution or melt: Flux method

- In contrast to the above methods in which crystals have the same composition as the melt, precipitation methods involve the growth of crystals from a solvent of different composition
- The solvent may be one of the constituents of the desired crystal,
 - e.g. crystallization of salt hydrate crystals from water,
 - or the solvent may be an entirely separate liquid in which the crystals of interest are partially soluble, e.g. various high-melting silicates may be precipitated from low-melting borate or halide melts
- In these cases, the solvent melts are often referred to as fluxes since they
 effectively reduce the melting point of the crystals by a considerable amount.

(1) How to make Si? $(T_{melt} = 1412 \, ^{\circ}C)$

Let's aim for max temperature of our furnace of ~ 1000 °C Look up solvents that are low melting: Bi, Sn, Zn, Ga, Al

Best solvent

