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Dispersion interactions in silicon allotropes†

Antti J. Karttunen,*a Denis Usvyat,b Martin Schützb and Lorenzo Maschio*c

van der Waals interactions are known to play a key role in the formation of weakly bound solids, such as

molecular or layered crystals. Here we show that the correct quantum-chemical description of van der Waals

dispersion is also essential for a correct description of the relative stability between purely covalently-bound

solids like silicon allotropes. To this end, we apply periodic local MP2 and DFT with Grimme’s empirical –D3

correction to 11 experimentally determined or yet hypothetical crystalline silicon structures, including the

most recently discovered silicon allotropes. Both methods provide similar energy ordering of the polymorphs,

which, at the same time, noticeably deviate from the order predicted by standard DFT without an appropriate

description of the van der Waals dispersion.

Introduction

Novel allotropes of the chemical elements are of great scientific
and technological interest. For example, the step-wise discovery of
carbon fullerenes,1 carbon nanotubes,2 and graphene3 has each
time opened up a completely new research field of increasing
proportions. There are also significant ongoing experimental and
computational efforts towards the discovery of new allotropes for
the heavier group 14 elements silicon and germanium. In the case
of silicon, its fundamental technological role as the key material in
microelectronic and photovoltaic technologies is a major driving
force for the research towards novel allotropes. In particular, the
discovery of direct bandgap silicon allotropes that can be prepared
in bulk quantities could result in improved silicon-based photo-
voltaic or optoelectronic applications, depending on the magni-
tude of the band gap. Important examples of well-characterized
silicon allotropes are Si(cF136) (silicon clathrate II),4,5 and the
other recently synthesized open-framework allotrope Si(oC24).6

Of these two open-framework allotropes the cF136 structure has
also been obtained for germanium.7 Neither Si(cF136) nor Si(oC24)
possess a direct band gap, but their controlled preparation via
vacuum treatment of the binary precursors NaxSi136 and Na4Si24

illustrates an important synthetic strategy for the discovery of novel
silicon and germanium allotropes.

A large number of previous computational studies have
focused on existing and hypothetical allotropes of silicon.

Because tetrahedrally coordinated group 14 atoms such as silicon
can form a vast number of different types of networks, a systema-
tic classification of the possible network topologies is of utmost
importance.8 A highly efficient way to analyze the network topol-
ogies is the TOPOS software suite,9 which also includes structural
databases that can be used to assess whether a certain topology is
really a novel one or if it has already been discovered. Another
important resource in this field is the Reticular Chemistry
Structure Resource,10 which provides thousands of already
known network topologies. Finally, many tetrahedrally coordi-
nated carbon allotropes predicted in the literature are also
relevant for silicon, and the recently introduced Samara Carbon
Allotrope Database provides convenient access to hundreds of
network topologies relevant for tetrahedrally coordinated group
14 elements.11

Due to the vast number of hypothetical silicon allotropes
proposed in the recent literature and provided in the above-
mentioned structural databases, we will not review all of them
here. For those interested in a deeper survey of the existing
allotropes, Bromley et al. have provided an excellent and extensive
review of low-density allotropy in silicon.12 Low-density allotropes
and the structural principles of silicon clathrate frameworks have
also been discussed in ref. 13. Finally, a review of more recent
work on silicon allotropes is included in a paper that also provides
guidelines for deriving Si allotropes in a chemistry-inspired
fashion from the diamond structure.14 The number of hypothetical
silicon allotropes is expected to increase steadily as novel strategies
are adopted for discovering them. Ab initio random structure
searches and particle swarm methods are some examples of the
new strategies.15,16 Another very fruitful strategy is to exploit
the topologies known for zeolites.17–20

Practically all computational studies on existing and hypo-
thetical silicon allotropes so far have been carried out using
standard density functional theory (DFT) methods, that is,
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with either LDA, GGA, or hybrid exchange correlation functionals.
A common problem of standard DFT functionals is that they
cannot capture van der Waals-dispersion interactions, unless the
dispersion correction is added to the DFT energy.21,22 To our
knowledge, the role of dispersion interactions in the energetics
of tetrahedrally coordinated silicon allotropes has been neglected
so far. While dispersion interactions play a key role in structural
chemistry of molecular crystals,21–23 they are typically considered
to be less important for bulk solids with covalent or ionic
bonding. However, previous work on bulk TiO2 or BN poly-
morphs has clearly illustrated that dispersion interactions can
be important also for network-type bulk materials and need to
be taken into account to obtain the experimentally known energy
ordering of topologically different polymorphs.24–26 Indeed,
two-body dispersion is always an attractive force, which in bulky
systems can accumulate to a sufficiently large contribution
to influence even the relative stabilities of covalently bound
polymorphs.

We note at this point that some standard functionals (e.g.
LDA, PBE, or PBEsol) deliver artificial non-electrostatic binding
between two closed-shell systems, which can to a certain extent
effectively substitute the van der Waals interaction. However,
this fortuitous error compensation can only ‘‘work’’ in small
systems, since this fictitious binding has an exponential rather
than the genuine R�6 decay of the van der Waals dispersion.
Therefore, the effect of accumulated long-range dispersion in
bulky systems cannot be captured in this way. In order to over-
come this problem, in the past few decades several DFT-based
approaches appeared that include van der Waals interaction. The
presently most popular technique is abovementioned Grimme’s
empirical correction D.21 There are also more rigorous ways of
treating dispersion within the DFT framework,22,27–31 which
however are usually computationally much more demanding
than standard DFT.

An alternative to DFT is the ab initio wave-function method-
ology. These methods can capture dispersion as well as other
types of interactions in a balanced and non-empirical way.
Furthermore, these techniques form methodological hierarchies,
allowing for a systematic improvement of the accuracy of the
results. The problem of such methods is their computational
cost, which, especially in solids, can become prohibitively high.
Nevertheless, low order quantum chemical methods, such as
MP232,33 or the Random Phase Approximation (RPA),34,35 are
available in the periodic form and can be applied for relatively
complex systems. Higher order corrections can be calculated
using fragment-based approaches.36–40 The most advanced
hierarchical wavefunction-based techniques already challenge
the accuracy of experimentally determined lattice41 or adsorp-
tion energies.42

In this work we investigate dispersion interactions in different
types of silicon allotropes to shed light on the stability trends of the
allotropes. By applying the Orbital-Specific Virtuals (OSV) LMP2
approach43 recently implemented in the CRYSCOR code,32 we carry
out a systematic comparison of dispersion interactions in different
silicon topologies without any empirical parametrization. We also
compare our results with standard and dispersion-corrected

DFT methods and demonstrate that the dispersion interactions
have a significant effect on the predicted stabilities of several
low-density allotropes of silicon. van der Waals dispersion in a
silicon clathrate framework containing noble gas guest atoms
has been investigated by some of us using periodic LMP2 and
dispersion-corrected DFT earlier.44 However, that study focused
on the host–guest interactions and included only a single network
topology. In the present study, we shift our focus on dispersion
within the covalent networks themselves and its role in their
relative energetics.

Computational methods

The silicon allotropes were investigated using two different
types of quantum chemical methods, which are, density func-
tional theory (DFT) and local second-order Møller–Plesset pertur-
bation theory (LMP2).45 The DFT calculations were carried out
using the CRYSTAL14 program package.46 In addition to the
standard hybrid PBE0 functional, we also applied Grimme’s
empirical DFT-D3 dispersion correction with Becke–Johnson
damping (PBE0-D3).47–50 Both LMP2 and DFT calculations
were carried out using a localized Gaussian-type basis set of
triple-zeta-valence + double polarization (TZVPP44,51) quality.
The Monkhorst–Pack-type k-point grids used for sampling the
reciprocal space of each structure are listed in the Results and
discussion section.52 The geometries of all studied structures
were fully optimized using both PBE0 and PBE0-D3 functionals
and for both functionals the relative energy at the respective
local minimum is used in the comparisons. Full structural
data and detailed specification of the computational para-
meters and the basis set can be found in the ESI.† All studied
structures have been confirmed previously to be true local
minima either with DFT-GGA or hybrid DFT methods (see the
Results and discussion section for references). The three-body
(ABC) contribution to the D3 dispersion53 correction was tested
on a few single-point structures at the PBE0 minimum, but the
effect of the three-body contribution on relative stabilities does
not appear to be significant. For example, the relative energy of
the hP8 structure in comparison to the cF8 structure did not
change, while the relative energy of the cF136 structure decreased
by 2.5%.

The LMP2 calculations were carried out with a development
version of the CRYSCOR software,32 which implements orbital-
specific virtuals (OSVs) to represent the truncated pair-specific
virtual space.43 In the OSV-LMP2 formalism, it is not necessary
to manually define excitation domains for the virtual space
as in the previous implementation based on projected atomic
orbitals (PAO-LMP2). The OSV-LMP2 straightforwardly enables
the calculation of smooth potential energy surfaces and relative
energies of structural frameworks with different topologies.40,43

The Hartree–Fock reference wavefunction and the localized valence-
space Wannier functions (WFs) necessary for the LMP2 procedure
were obtained with CRYSTAL14. In the LMP2 calculations, we
utilized the direct-space density-fitting technique for computing
the two-electron four-index integrals.54A Poisson/Gaussian-type

Paper PCCP



This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys., 2017, 19, 7699--7707 | 7701

auxiliary basis set55,56 corresponding to the triple-zeta-valence
orbital basis set57 was employed for density-fitting.

Due to the lack of analytical gradients, full geometry optimi-
zations of the studied structures were not yet computationally
feasible at the LMP2 level. Instead, we performed single-point
energy calculations at the geometries optimized with the DFT
methods. A potential energy scan for the lattice constant of a-Si
showed that an optimal LMP2 lattice constant of 5.43 Å is
practically identical to the PBE0 lattice constant, while the
PBE0-D3-optimized lattice constant has a slightly smaller value
of 5.39 Å (see the ESI† for details on the LMP2 potential energy
scan). The experimental value of the lattice constant at 6.4 K is
5.430 Å.58,59 The low-temperature value is in fact close to the
room temperature value of 5.431 Å because a-Si shows negative
thermal expansion up to about 170 K. The LMP2/TZVPP relative
energies reported here have been calculated at the PBE0 geo-
metries, but the relative LMP2 energies obtained at the PBE0-D3
geometries are very similar. We note that in a previous study
utilizing DFT-PBE with semiempirical dispersion corrections,
the effect of the dispersion correction on the lattice constant
of a-Si was four times smaller in comparison to the difference
arising from the D3 correction.60

Results and discussion

The silicon allotropes studied in this work are described in Table 1
and Fig. 1–3. The energetically most favorable silicon allotrope
(cF8) a-Si is used as the reference to investigate the relative energies
of the other ten allotropes. These have been shown to be among

the energetically most favorable structures in previous computa-
tional studies carried out typically with DFT-LDA, DFT-PBE, and
DFT-PBE0 methods that cannot properly describe weak dispersion
interactions. Some of the silicon allotropes studied here have been
synthesized experimentally (hP4, oC24, cF136), while all others, yet
hypothetical, show some close relation to experimentally known
materials (some are known for Ge, but not for Si). We note
that several silicon allotropes, which do not show any direct
relationship with experimentally known materials, have also been
predicted recently.15,61 They show rather low relative energy
because the structures incorporate the strain-free diamond
lattice as a building block.

In the following, we denote the individual silicon allotropes
under study by their Pearson symbols. We briefly discuss their
network topologies in the captions of Fig. 1–3. The full descrip-
tions of their structural characteristics can be found in the
original references cited in Table 1. The network topologies
of most of the structures are described in full detail in the
RCSR database or can be obtained with the help of the TOPOS
program.8,10

The relative energies DE predicted for the studied silicon
allotropes are listed in Table 2 and illustrated in Fig. 4. The cF8
structure is used as the reference with DE = 0.0 kJ mol�1 Si�1. The
energy ordering of the allotropes obtained at the PBE0/TZVPP
level of theory is in line with previous computational studies
carried out with DFT-GGA and hybrid DFT methods,12–14,17

even though no previous paper includes exactly the same set
of allotropes as discussed here. However, the energy ordering of
the allotropes shows some significant changes when dispersion
interactions are taken into account either with the PBE0-D3 or

Table 1 Silicon allotropes included in this study. The structures are ordered according to their relative energy DE at the LMP2/TZVPP level (see below)
from the most to the least stable structure

Pearsona Name(s)b
Space
group ac (Å) bc (Å) cc (Å) k-Gridd Notes

cF8 Alpha (a)/3C Fd%3m 5.43 12 � 12 � 12 Diamond structure. Most stable Si allotrope under STP
conditions.

hP8 4H P63/mmc 3.83 12.59 12 � 12 � 4 Hexagonal polytype of 3C. 4H-Ge has been synthesized as
a bulk material starting from m-allo-Ge.62,63

hP4 2H P63/mmc 3.83 6.32 12 � 12 � 6 Hexagonal polytype of 3C. 2H-Si has been fabricated on
GaP nanowire templates.64

tP12 cdp/T12 P42/ncm 5.19 9.24 8 � 8 � 4 Hypothetical allotrope, topology the same as in CdP2.16,65

oP32 GAa4 Pbcm 7.85 11.29 7.45 4 � 4 � 4 The most stable building block of stacking-faulted
m-allo-Ge (synthesized as a bulk material structure
starting from Li7Ge12).17,63

hP6 unj/NGS P6122 5.44 5.08 8 � 8 � 8 Hypothetical allotrope, topology the same as for the Ga–Sn
network in NaGaSn5.17,66

tP24 tum1 P42/nmc 7.42 9.15 6 � 6 � 4 Hypothetical allotrope, topology the same as for the B–Si
network in LiBSi2.67

oC24 CAS Cmcm 3.82 10.68 12.66 8 � 8 � 4 Has been synthesized from Na4Si24.68

cF136 Clathrate II Fd%3m 14.65 4 � 4 � 4 Has been synthesized from NaxSi136,4,5 also known
for Ge.7

cI46 Clathrate VIII I%43m 10.04 4 � 4 � 4 Hypothetical allotrope, experimentally known in type-VIII
Ge and Sn clathrates.13,69,70

cP46 Clathrate I Pm%3n 10.16 4 � 4 � 4 Hypothetical allotrope, experimentally known in Na8Si46
type-I clathrate.13,69,70

a Pearson symbol of the allotrope, including the Bravais lattice and the number of atoms in the crystallographic unit cell. For the cF8, oC24, cF136,
and cI46 structures the number of atoms in the primitive cell is 2, 12, 34, and 23, respectively. b Names/codes used for the structure in the literature
(see Notes). c Lattice parameters of the structure obtained at the PBE0/TZVPP level of theory. d Monkhorst–Pack-type k-point grid used for
sampling the reciprocal space.
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the LMP2 method. The relative energies of the allotropes with
lowest densities clearly increase in comparison to the denser
allotropes when dispersion interactions are taken into account.
For example, for the lowest-density allotrope, that is, the
cF136 clathrate, DE increases from 7.2 kJ mol�1 Si�1 (PBE0)
to 12.6 kJ mol�1 Si�1 (PBE0-D3) or 13.5 kJ mol�1 Si�1 (LMP2).

The silicon atoms are bound in a similar tetrahedral fashion in
all studied allotropes, but in denser structures the next-nearest
neighbors are closer than in lower-density structures with cavities
or channels, resulting in stronger dispersion interactions. The
correlation between the dispersion interactions is clearly seen
in Fig. 5, which shows the difference between DEPBE0-D3 and

Fig. 1 Simple silicon allotropes that are polytypes of the diamond structure. (a) cF8 (a-Si/3C polytype); (b) hP4 (2H polytype); (c) hP8 (4H polytype).
The cF8 structure has been oriented to emphasize the structural connection to the hexagonal polytypes. The red lines denote six-membered rings in the
chair conformation, while the blue lines denote six-membered rings in the slightly more strained boat conformation. The least strained 3C polytype
possesses only six-membered rings in the chair conformation.

Fig. 2 Silicon allotropes that are less dense than the diamond polytypes shown in Fig. 1. All structures possess channels highlighted by the violet space-
filling balls. (a) hP6 (unj/NGS); (b) tP12 (cdp/T12) (c) oC24 (CAS); (d) tP24 (tum1); (e) oP32 (GAa4). hP6 contains helical (chiral) channels in one direction,
while in tP12 similar helical channels are stacked in a perpendicular fashion along the c axis. In oC24, tP24, and oP32 the channels highlighted here are
formed by eight-, seven-, and seven-membered rings, respectively. All three allotropes also possess smaller channels formed by five-membered rings.
In tP24, the larger channels run in a perpendicular fashion. The structures hP6, tP12, and tP24 can actually be derived by slicing and re-connecting the
cF8 diamond structure and the structural characteristics of these allotropes have been recently described in detail.14
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DEPBE0 plotted as a function of density of the individual silicon
allotropes (the densest cF8 allotrope has the largest absolute D3
contribution per atom and DEPBE0-D3 � DEPBE0 increases for the
less dense allotropes). Since the D3 dispersion coefficients by
construction remain the same for all the crystals under study,
the magnitude of the D3 contribution to the energy per one

Si atom has to grow linearly with the increase of the density, which
is also evident from Fig. 5. Though two-body dispersion is a weak
attractive force, it is relatively long-ranged: it decays with the inverse
sixth power of the distance between the interacting fragments. Yet
due to the 3D packing, the number of formal fragments in a solid,
separated by a certain distance R from a given center, grows
quadratically with this distance. Hence, dispersion interactions
have effectively a much larger range and are of greater importance
in crystals compared to molecular systems. As the presented results
demonstrate, the excess in dispersion in more compact structures
is already sufficient to influence the relative stability between the
silicon allotropes with different topologies.

Fig. 3 The least dense silicon allotropes studied here: clathrate frame-
works composed of polyhedral cages. (a) cP46 (Clathrate I) composed
of 20-membered (violet) and 24-membered (blue) cages; (b) cF136
(Clathrate II) composed of 20-membered (violet) and 28-memberd
(green) cages; (c) cI46 (Clathrate VIII) composed of 23-membered cages.
The structural principles of the studied clathrate frameworks have been
described in detail elsewhere.13

Table 2 Predicted relative energies of the studied silicon allotropes. The
structures are ordered according to their relative energy DE at the LMP2/
TZVPP level

Pearsona Densityb (g cm�3)

DEc (kJ mol�1 Si�1)

PBE0 PBE0-D3 LMP2

cF8 2.316 0.0 0.0 0
hP8 2.320 0.3 0.4 1.2
hP4 2.319 1.0 1.1 1.9
tP12 2.245 5.7 7.1 7.6
oP32 2.250 7.6 8.9 8.5
hP6 2.137 6.9 10.3 10.6
tP24 2.210 9.4 11.5 10.6
oC24 2.157 10.3 13.1 12.4
cF136 2.010 7.2 12.6 13.5
cI23 2.112 10.1 14.0 13.6
cP46 2.036 8.5 13.5 14.1

a Pearson symbol of the silicon allotrope (see Table 1). b Density of the
allotrope (PBE0/TZVPP geometry). c Relative energy of the allotrope,
obtained as DE = E(allotrope)/n � E(cF8)/2, where n is the number of
atoms in the primitive cell of the allotrope (n = 2 for cF8). The PBE0 and
PBE0-D3 energies have been obtained for PBE0 and PBE0-D3 optimized
structures, respectively. The LMP2 energies are for PBE0-optimized
structures (see Computational details)

Fig. 4 Relative energies of the studied silicon allotropes obtained with
PBE0, PBE0-D3, and LMP2 methods (see Table 2 for details). The PBE0 and
PBE0-D3 energies have been obtained for PBE0 and PBE0-D3 optimized
structures, respectively. The LMP2 energies are for PBE0-optimized struc-
tures (see Computational details).
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The PBE0-D3 and LMP2 methods yield rather similar relative
energies. The D3 correction does not capture the influence of
the topology on the dispersion coefficients, which depend only
on the atomic species. The LMP2 treatment of dispersion, on the
other hand, is rigorous in this respect. However, since both
methods provide the same general pattern for the relative stabi-
lity as a function of the density, the influence of the structure on
the dispersion coefficients seems not to be substantial (at least
for the allotropes considered in this study). Nevertheless, the
predicted energy ordering does show some differences. In parti-
cular, the energy ordering changes from DE(cF136) o DE(oC24)
to DE(oC24) o DE(cF136) when comparing PBE0-D3 to LMP2.
Both of these allotropes have been synthesized (see Table 1),
demonstrating that the energy orderings discussed here are
relevant for experimentally known species. Interestingly, the
dense hP8 and hP4 allotropes closely related to the cF8 reference
structure illustrate one clear difference between the DEPBE0-D3

and DELMP2 values. For PBE0-D3, DE(hP8) = 0.4 kJ mol�1 Si�1

and DE(hP4) = 1.1 kJ mol�1 Si�1, which are very close to the
PBE0 values of 0.3 and 1.0 kJ mol�1 Si�1, respectively. For
comparison, the LMP2 values are DE(hP8) = 1.2 kJ mol�1 Si�1

and DE(hP4) = 1.9 kJ mol�1 Si�1, suggesting a much larger
importance of dispersion interactions for the relative energetics
of cF8, hP8, and hP4. The difference of 0.8 kJ mol�1 Si�1 between
the PBE0-D3 and LMP2 values is of similar magnitude to the
differences between these methods for the low-density allotropes.
There is no experimental thermodynamic data available for these
silicon allotropes, but a recent study on the analogous hP8-Ge
allotrope (4H-Ge) offers a point of comparison.71 Using differen-
tial scanning calorimetry the transition enthalpy hP8-Ge - cF8-Ge
was determined to be a value of 1.46 � 0.55 kJ mol�1 Ge�1.
In the course of the present work we calculated the DE value
of hP8-Ge at the PBE0-D3/TZVPP and LMP2/TZVPP levels of
theory. Neglecting zero-point vibrational energy contributions,
we obtained DEPBE0-D3 = 0.6 kJ mol�1 Ge�1 and DELMP2 =
0.9 kJ mol�1 Ge�1. Evidently, the LMP2 value is closer to the
experimental value. This comparison suggests that the larger

DE(hP8) and DE(hP4) values predicted for silicon by LMP2 are
likely to be reasonable. We note that MP2 often overestimates
dispersion interactions, this problem being the most severe for
highly polarizable systems with a small band gap.72

Finally, we shortly comment on the energy ordering of the
individual silicon allotropes obtained with various DFT approaches.
We have carried out DE calculations also using the GGA functionals
PBE and PBE-D3. The full results are not reported here since they
do not really add any benefit beyond the already reported PBE0 and
PBE0-D3 values, but we note that in general the predicted DE values
increase as PBE o PBE0 o PBE-D3 o PBE0-D3. For example, for
the lowest-density allotrope cF136, the predicted values increase
as 6.1 o 7.2 o 10.8 o 12.6 kJ mol�1 Si�1, the corresponding
LMP2 value being 13.5 kJ mol�1 Si�1. Based on this comparison,
it appears that the dispersion interactions can be much more
significant for the energy ordering of silicon allotropes than the
use of a hybrid instead of the GGA functional. The data displayed
in Fig. 4 also reveal the influence of the underlying PBE0 energies
on the PBE0-D3 results: the latter curve has drops for the
same structures as the PBE0 one, which are softened but not
eliminated by the –D-contribution. In the LMP2 case such a bias
is clearly absent.

It should be noted that while the DE values discussed here
shed light on the relative stability of various silicon allotropes,
it is not easy to transform the predicted DE values into successful
guidelines for the experimental realization of novel silicon
allotropes. In fact, while the diamond polytype allotropes hP8
and hP4 show very low relative energies in comparison to cF8, the
bulk synthesis of neither allotrope has been realized. Instead, the
cF136 and oC24 allotropes have been realized experimentally
despite their rather high relative energy. Thus, when hunting
for new silicon allotropes, it has so far proved to be more
important to discover a suitable precursor material that can be
modified to yield a metastable modification of silicon. For
example, an important synthetic route towards novel silicon
allotropes is via binary alkali metal phases such as Na4Si24

and NaxSi136, from which the Na atoms can be removed with
vacuum treatments in a controlled fashion to yield the new
allotropes oC24 and cF136. Considering the predicted LMP2
and PBE0-D3 relative energies, it appears that even after taking
the dispersion interactions into account, all hypothetical struc-
tures studied here could be experimentally feasible silicon
allotropes, if suitable precursor materials can be discovered
and there is a large enough energy barrier to prevent their
immediate transformation into the cF8 structure or other more
stable allotropes.

Conclusions

We have investigated how dispersion interactions affect the
stability trends of the energetically most favorable silicon
allotropes. Systematic calculations at the LMP2/TZVPP and
PBE0-D3/TZVPP levels of theory clearly demonstrate that dis-
persion interactions in silicon networks can be so strong that
the energy ordering of the allotropes is changed with respect

Fig. 5 The difference between DEPBE0-D3 and DEPBE0 plotted as a func-
tion of density for the studied silicon allotropes. Note that in this double
difference formula, DEPBE0-D3 and DEPBE0 are by definition zero for the
densest allotrope Si-cF8 (see the caption of Table 2 for the definition of DE).
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to DFT calculations not including dispersion interactions.
Furthermore, inclusion of dispersion interactions can be much
more significant for the energy ordering of silicon allotropes than
the use of hybrid DFT instead of GGA-DFT. The LMP2/TZVPP
calculations show that two experimentally known silicon
allotropes, oC24 and cF136, possess rather high relative energies
when the dispersion interactions are taken into account. Therefore,
it appears that the denser and less strained silicon allotropes
hP8, hP4, oP32, tP12, hP6, and tP24 should be feasible targets
for experimental synthesis, provided that suitable precursor
materials for them can be found.
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44 A. J. Karttunen and T. F. Fässler, Semiconducting Clathrates
Meet Gas Hydrates: Xe24[Sn136], Chem. – Eur. J., 2014, 20,
6693–6698.

45 C. Pisani, M. Busso, G. Capecchi, S. Casassa, R. Dovesi,
L. Maschio, C. Zicovich-Wilson and M. Schütz, Local-MP2
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Tetrahedral Semiconductor Framework from Boron and
Silicon Atoms Bearing Lithium Atoms in the Channels,
Angew. Chem., Int. Ed., 2013, 52, 5978–5982.

68 D. Y. Kim, S. Stefanoski, O. O. Kurakevych and T. A. Strobel,
Synthesis of an Open-Framework Allotrope of Silicon,
Nat. Mater., 2015, 14, 169–173.

69 A. Shevelkov and K. Kovnir, Zintl Clathrates, Struct. Bonding,
2011, 139, 97–142.

70 J. Dolyniuk, B. Owens-Baird, J. Wang, J. V. Zaikina and
K. Kovnir, Clathrate Thermoelectrics, Mater. Sci. Eng., R,
2016, 108, 1–46.

71 J. V. Zaikina, E. Muthuswamy, K. I. Lilova, Z. M. Gibbs,
M. Zeilinger, G. J. Snyder, T. F. Fässler, A. Navrotsky and
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