Biomedical Ultrasonics, 5 cr

Heikki Nieminen

7.1.-31.5.2019

Quantitative ultrasonics

Basic principles

- Different experimental arrangements allow one to characterize tissue properties in a quantitative way
- Quantitative ultrasonics **→** quantitative diagnostics
- Contrast mechanisms:
 - Reflection coefficient
 - Transmission coefficient
 - Speed of sound
- The contrast mechanisms is typically needed to reveal the pathological state
 - The idea is to relate the ultrasound physics to pathology

Common measurement geometries

Reflection mode (RX):

Transmission mode (TX):

Reflection measurement

Reflection coefficient

$$R = \frac{p_r}{p_i}$$

i = incident wave *r* = reflected wave

Pressure of the incident wave can be measured by measuring the pressure of the reflected wave when having a pefrect reflector at the same location as the surface of the object. The replace the perfect reflector by object to measure the pressure of the reflected wave from the object.

Transmission measurement: speed of sound

Measurement of speed-of-sound in reflection mode:

$$\frac{1}{c_{\rm t}} = \frac{1}{c_{\rm w}} - \frac{\Delta t}{2d_z}$$

t = tissue w = water

Transmission measurement: attenuation coefficient

• to be derived in the exercises

Osteoporosis

Normal

Osteoporosis

Quantitative ultrasound for assessment of bone mineral density

Duck p. 293

Quantitative ultrasound for assessment of bone mineral density, different configurations

Quantitative ultrasound for assessment of bone mineral density

Broadband ultrasound attenuation (BUA):

$$BUA = \frac{d}{df} \left[20 \log_{10} \left[\frac{A_{W}(f)}{A_{H}(f)} \right] \right]$$

Duck p. 293-295

W = water, H = heel

Why is attenuation decreased by osteoporosis?

Quantitative ultrasound tomography (breast)

Lenox et al 2015: doi: 10.1155/2015/454028

Quantitative ultrasound tomography (breast)

Malik et al 2016: DOI: 10.1038/srep38857

Quantitative ultrasound tomography (breast)

Malik et al 2016: DOI: 10.1038/srep38857

Scanning ultrasound microscopy (SAM)

• Microscopic imaging of acoustic properties of tissue

SAM: cortical bone

[GPa]

Fig. 1 Differences in the tibia mid-shaft micro- and ultrastructure in patients of increasing age depicted by 50-MHz scanning acoustic microscopy (SAM). The progression of bone deterioration (from left to right)

results in an accumulation of large BMUs, cortical thinning and changes in the tissue stiffness. The medial (upper) region can be assessed in vivo by ultrasound

SAM: myocardial infarction

Figure 10. (A) Optical, (B) attenuation and (C) sound speed images of acute myocardial infarction.

Ultrasound provides a label-free markers for tissue types and pathologies.

SAM: arterial wall

Figure 14. (A) Optical, (B) 200-MHz scanning acoustic microscope and (C) 1.1-GHz scanning acoustic microscope images of normal human coronary artery. A: Adventitia; I: Intima; M: Media.

Non-linear ultrasonics

Non-linear ultrasonics

• The field of ultrasonics related to non-linear propagation of sound (relationships between particle displacement, particle velocity, velocity, pressure, density etc. are not linear)

Selected non-linear phenomena

Spatial average

- Spatial average-temporal average (SATA) (this is like I_{spta} supplemented by area integral)
- Spatial average-pulse average (SAPA) (Like I_{sppa} supplemented by area integral)

$$I_{\text{sata}} = \frac{\int_A \int_{t_1}^{t_2} p^2(t, x, y) dt dA}{A \rho c PRP}$$
$$t_1 = ? \quad t_2 = ?$$

$$I_{\text{sapa}} = \frac{\int_{A} \int p^{2}(t, x, y) dt dA}{A \rho c PD}$$

Abbreviation or term	Definition
Absorption	Loss of acoustic energy converted into other forms of energy such as heat.
Acoustic discontinuity	Spatially abrupt change in e.g. speed of sound or acoustic impedance at an interface
	between two materials.
Acoustic impedance	Material property that describes how much <i>pressure</i> is generated in a medium from
	spatial displacement of its molecules at a given frequency. Sound is reflected at an
	interface between two materials with different acoustic impedances.
Acoustic radiation	Force induced by sound impinging on sound-absorbing material (e.g. tissue) or acoustic
force	interfaces (e.g. fluid-tissue or gas-fluid-interface).
ARFI, i.e. Acoustic	An elasticity imaging technique in which acoustic radiation force produces spatial tissue
Radiation Force	displacement, which is recorded by <i>ultrasound</i> imaging device. The detected spatial
Impulse imaging	displacement are converted into spatial elasticity images that can be used to diagnose <i>e.g.</i>
	hard tumors deep in the body that are difficult to palpate.

Acoustic streaming	Streaming of fluids induced by <i>absorption</i> of sound into the medium.
Attenuation	Loss of acoustic energy due to <i>absorption</i> , sound scattering at <i>acoustic discontinuities</i>
	and spreading of the sound beam (geometric attenuation).
Cavitation (stable,	Interaction of acoustic <i>pressure</i> variation and gas <i>micro-bubbles</i> leading to radial bubble
inertial)	oscillation (stable cavitation). This can induce fluid streams around the bubble and shear
	forces on cells. Combining intense sound and micro-bubbles allows producing micro-
	implosions or fast and hot water-jets at the micro-scale that can micro-machine material
	(inertial cavitation). Cavitation is a threshold phenomenon that can be controlled by
	adjusting frequency, maximum negative sound pressure amplitude, and duration of the
	applied sound pulse.
Displacement	In ultrasound wave, molecules oscillate coherently around their rest position. The
	distance of molecules from their rest position is called a displacement. In longitudinal or
	shear waves the displacement of molecules occur along or perpendicular to the direction
	of ultrasound propagation, respectively.

HIU	High-intensity <i>ultrasound</i> or power <i>ultrasound</i> has $\gtrsim 1 \text{W/cm}^2$ <i>intensity</i> .
HIFU, i.e. High-	High-Intensity Focused Ultrasound is <i>HIU</i> that is produced by geometrically and/or
Intensity Focused	electrically focusing ultrasound energy into a small volume. In medicine, HIFU is
Ultrasound	typically used to thermally ablate tumor tissue.
Intensity	Power of sound per unit area perpendicular to the direction of <i>ultrasound</i> propagation (St
	unit: W/cm²). Ultrasound intensity is directly proportional to the square of ultrasound
	pressure.
Lithoptripsy	Method for breaking gallstones or other calculi by strong <i>shockwaves</i> .
LIU	Low-intensity <i>ultrasound</i> or low power ultrasound has ≤ 1 W/cm ² <i>intensity</i> .
Longitudinal wave	See displacement.

Micro-bubble	A micron sized gas bubble. When a micro-bubble interacts with sound, a phenomenon
	called <i>cavitation</i> may occur. Micro-bubbles are used in medicine as <i>ultrasound</i> imaging
	contrast agents (enhanced scattering of sound) and in therapy applications (enhanced
	cavitation effects). <u>Nano</u> -bubbles have shown promise to act as ultrasound contrast
	agents.
PRF, i.e. pulse	The rate (Hz) at which ultrasound pulses or bursts are generated.
repetition frequency	
Pressure	Ultrasonic pressure appears as a travelling density disturbance of material oscillating at a
	frequency>20 kHz.
Reflection	Reflection of sound occurs when sound meets an acoustic impedance mismatch (see
	acoustic discontinuity), which is greater in size than the wavelength (e.g. collagen
	bundle). When the discontinuity is of same size or smaller than the wavelength of the
	sound wave, scattering occurs instead of reflection. Collagen at superficial articular
	cartilage or inside cartilage is known to be a strong reflector or scatterer of ultrasound,
	respectively.

Scattering	See reflection.
Shear wave	See displacement.
Speed of sound	A property of a sound wave describing the travelling speed of a wave. In articular
	cartilage, the <i>ultrasound</i> speed is typically 1600-1700 m/s in MHz domain.
Shock wave	A travelling acoustic wave with steep temporal and spatial gradients in pressure. This is
	typically a short impulse-like acoustic wave with high pressure amplitude and broadband
	spectral content. Its propagation speed depends on <i>intensity</i> .
Thermal ablation	Removal of tissue by heat. This strategy is used <i>e.g.</i> in <i>HIFU</i> surgery, where tumor cells
	are killed by heating tissue with focused ultrasound.

Ultrasonic actuation	A process of using <i>ultrasound</i> to modify, machine or micro-machine material such as
	tissue. Common examples of ultrasound actuation are:
	- <i>cutting;</i> ultrasonic knife with vibrating blade to enhance surgical cutting of tissues.
	- <i>homogenization</i> : ultrasound can be used to homogenize tissue by typically
	combining low-frequency ultrasound with strong inertial <i>cavitation</i> .
	- milling, abrading or polishing: in these industrial actuation techniques high-
	intensity ultrasound is applied to milling, abrading or polishing tools to enhance the
	desired actuation effect.
	- translation: acoustic radiation force can move tissue or translate gas within a fluid.
	- <i>heating</i> ; ultrasound can be used to selectively heat tissue for <i>thermal ablation</i> or
	hyperthemia.
	- welding: applying ultrasound to the bonding spot during a welding process, e.g. a
	stronger bond can be achieved.
	- tearing: stresses from shock waves can tear molecule bonds and consequently tear
	materials such as tissue.
	- <i>hardening</i> , or <i>softening</i> : ultrasound can harden or soften some engineering materials.
Ultrasound	Coherent spatial oscillation of molecules exceeding the spectral range of human hearing
	(frequencies > 20 kHz) resulting in a travelling (or standing) waveform. Spatial
	oscillation of molecules results in density and <i>pressure</i> oscillation of the material.

Ultrasound speed	See speed of sound.
Wavelength	The length (m) of one sinusoidal oscillation of a wave. In articular cartilage, the
	wavelengths of 100 kHz, 1 MHz and 10 MHz <i>ultrasound</i> are about 16 mm, 1.6 mm an
	160 µm.

Sound pressure level (SPL)

• Sound pressure level in Decibels (dB)

$$SPL_{\rm dB} = 10 \log_{10} \left(\frac{p^2}{p_{\rm ref}^2}\right) = 10 \log_{10} \left(\frac{I}{I_{\rm ref}}\right) = 20 \log_{10} \left(\frac{p}{p_{\rm ref}}\right)$$

- Reference pressure: $p_{ref} = 2.10^{-5} \text{ Pa}$
- Reference intensity: $I_{ref} = 10^{-12} \text{ W/m}^2$
- Sound pressure level in Nepers (Np)

$$SPL_{\rm Np} = \log_e \left(\frac{p^2}{p_{\rm ref}^2}\right) = \log_e \left(\frac{I}{I_{\rm ref}}\right) = SPL_{\rm dB}/8.686$$

Acoustic radiation force

Acoustic radiation force physics

History of acoustic radiation force

- Streaming induced by sound waves was first observed by Faraday in 1830 (light powder moves with sound in air)
- Kundt & Lehman were able to trap powder in an acoustic resonator
- Lord Rayleigh published the first theory on acoustic radiation force in 1902, which was later beefed up by Langevin

1842-1919

Major milestones of acoustic radiation force

Reading:

Sarvazyan et al. 2010: <u>http://www.sciencedirect.com/science/article/pii/S0301562910002450</u>

Radiation force

- Acoustic radiation force is a time-averaged force that an ultrasound can exert on material
- During the following lectures we deal with the radiation force in the following cases:
 - Travelling waves
 - Longitudinal waves
 - Interfaces
 - Attenuating (absorption & scattering) medium
 - Surface acoustic waves (SAWs)
 - Standing waves
 - Longitudinal waves
 - SAWs

It is all about particles...

http://www.fotosearch.com/print/CSP424/k4247911/

...and transfer of momentum.

Radiation force

- Acoustic radiation force occurs when:
 - Sound energy is absorbed into material
 - Travelling wave meets an acoustic discontuinity
 - Standing wave interacts with an acoustic discontinuity

F = dp/dt $m_1v_1 + m_2v_2 = m'_1v'_1 + m'_2v'_2$

Energy = constant

Radiation force (travelling longitudinal wave)

Pressure

SI unit: Pascal = Pa = $N/m^2 = J/m^3$

Pressure can be considered are force per unit area or as energy per volume (energy density)

Acoustic radiation force

- We now deal with radiation forces induced by travelling waves (no standing wave stuff)
- Acoustic radiation force occurs always when sound is reflected, scattered or absorbed
- This is a phenomenon that occurs in both linear and non-linear acoustics

Travelling wave

Change in momentum at elastic collision

Change in momentum at particle collision

What is the constant *k* in the different cases?

Acoustic radiation force at an absorbing boundary

 In general terms, Langevin radiation pressure, P_{Lan}, is defined as the energy density averaged over one cycle (sinusoidal wave). For a harmonic plane wave the radiation pressure can be expressed as:

$$P_{\text{Lan}} = \langle E \rangle_T = \frac{\hat{p}^2}{2\rho_0 c^2} = \frac{I}{c}$$
 [J / m³]

• By assuming P = F/A, the radiation force at a boundary can be expressed as τ

$$F = d_r < E >_T S$$

$$d_r = \text{drag coefficient}$$

• However, one must consider whether the sound is reflecting from the interface or is absorbed.

Acoustic radiation force at an absorbing boundary (plane wave)

- Where the target is greater than the beam, the radiation force *F* for an absorbing target can be expressed as $F = \int \left(\frac{I}{c}\right) dS = \frac{I}{c}S = \frac{W}{cS}S = \frac{W}{c}$, where *W* is the total acoustic power of the beam.
- All the sound energy is converted to a time-averaged force

Exercise: How do the reading on the scale and Langevin pressure at object surface differ?

Exercise: How do the reading on the scale and Langevin pressure at object surface differ?

Exercise: What if we apply pulses or bursts instead of applying a continuous wave?

Acoustic radiation force at a reflecting boundary

- If the interface is reflecting, one must take into account the contribution by reflection to Langevin pressure (*e.g.* at steel plate surface or water-air interface)
- By assuming P = F/A, the radiation force then can be expressed as $F = 2 < E >_T S$

Reflecting target

Excercise: Radiation force –generated fountain at fluid-air interface

• How would you estimate the intensity of the field with a "acoustic fountain" height at water-air interface?

(Don't mix this with streaming!) Radiation force and "suck-in force" from hydrostatic pressure balance out $\begin{array}{c}
\uparrow\\
F_{radiation} + F_{hydrostat} = 0\\
P_{Lan}A = \Delta p \\
P_{L$