
Anas Altartouri
Otaniemi 8.1.2019

YYT-C3002
Application Programming in Engineering

Introduction

Lecture content

Course content and structure

Motivation – why do we need to program?

What kind of programming – overview and basic concepts

Useful tools

Demos

8.1.2019

Anas Altartouri

2

Course admin

Lecture-based exercises

• Individual work (mainly!)

• A mix of reading materials and computer-based

• Exercise sessions follow each lecture at 12-14 – some sessions are
supported (i.e., the lecturer is there)

 Follow lecturers’ instructions about the type of their exercises

 Exercises are compulsory – you need to pass all exercises to

get the course credits!

 Your performance in the exercises will determine 40% of the

final grade. The other 60% is from the course exam

8.1.2019

Anas Altartouri

3

Course content and structure

Date Topic Lecturer

8.1.2019 Introduction to the course Anas Altartouri

10.1.2019 Software engineering – Introduction Teemu Peltonen

15.1.2019 Software engineering – Process and methods Teemu Peltonen

17.1.2019 Software engineering – Delivering quality Teemu Peltonen

22.1.2019 GIS I – Geoprocessing with FOSS and extending

desktop GIS

Anas Altartouri

24.1.2019 GIS II – Spatial databases and web map applications Anas Altartouri

29.1.2019 Matlab programming for FEM Jarkko Niiranen

31.1.2019 R programming and R extensions – Hydrostreamer Marko Kallio

5.2.2019 Software architectures and clouds Jussi Nikander

7.2.2019 Optimization with Matlab and external solvers Jani Romanoff

12.2.2019 System integration and interoperability Jussi Nikander

EXAM

8.1.2019

Anas Altartouri

4

Software …

“Computer programs and associated documentation.

Software products may be developed for a particular

customer or may be developed for a general market.”1

Application software

• System-specific

• Task-specific

• User interaction

8.1.2019

Anas Altartouri

5

1 Sommerville, Ian (2015). Software Engineering (10th ed.). Pearson.

Chapter One available from: https://iansommerville.com/software-engineering-book/web/sample-chapters/

Software engineering

Software engineering

“Software engineering is an engineering discipline that is concerned
with all aspects of software production from the early stages of system
specification through to maintaining the system after it has gone into
use.”1

Activities in software production (Sommerville, 2015, p. 7)

• Defining specifications

• Development: designing and programming

• Testing and validation

• Evolution

8.1.2019

Anas Altartouri

6

1 Sommerville, Ian (2015). Software Engineering (10th ed.). Pearson.

Chapter One available from: https://iansommerville.com/software-engineering-book/web/sample-chapters/

Should an engineer be able to code?
Why?

“GIS users should be equipped to do the equivalent of swimming a

few hundred yards, but need not look like or beat Michael Phelps.”

Adena Schutzberg (Direction Magazine 27.02.2012)

 Not specific to GIS and the field of Geoinformatics! The same can be
said for engineers in other fields

7

8.1.2019

Anas Altartouri

Should an engineer be able to code?
Why?

• Automate your workflow/routine

• Write models/functions that applications do not provide

• Have control over the process (adjust computations, memory

allocation, disk usage, output type, etc.)

• Understand how data are structured and how methods work

• Communicate and share your computations/models

• Knowing the process of software production would facilitate

communication with programmers and software engineers

(especially in cross-disciplinary application development)

8

8.1.2019

Anas Altartouri

Should an engineer be able to code?
Why?

Your skills in application programming will benefit you in almost

any direction you take

In the industry

“Now every company is a software company” David Kirkpatrick (Forbes

Magazine 30.11.2011)

In academia

• Tools for your own research

• System development as a research methodology 1

9

8.1.2019

Anas Altartouri

1 Nunamaker, J. F., Chen, M., Purdin, T. D. M. (1990–91). Systems development in information systems research. Journal of Management

Information Systems, 7(3), 89–106. (http://gkmc.utah.edu/7910F/papers/JMIS%20systems%20development%20in%20IS%20research.pdf)

…

16 directories, 254 files

10

8.1.2019

Anas Altartouri

Motivating example 1
Programming to automate processing of a large number of files

Motivating example 1
Programming to automate processing of a large number of files

Extracting the Archipelago Sea area from the NLS

topographic data

 Create a Shapefile with a single polygon representing the sea area

The procedure:

• Download datasets: 254 ZIP files organized in 16 dirs and sub-dirs

• Unzip the files (254 ZIP files  4938 x 5 Shapefiles)

• Extract and merge Shapefiles containing information about sea
water areas (254 x 5 files)

• Extract polygons that represent sea water from the merger file

• Dissolve the extracted sea water polygons into a single polygon

Solved using Linux shell command-line programs

• Bash for loop, wget, unzip, cp, GDAL ogr2ogr

11

8.1.2019

Anas Altartouri

…

16 directories, 254 files

Motivating example 2
Programming for the lack of task-specific tools & for big data handling

Estimation of relative sea openness based on fetch line abstraction

Given:

Water Framework Directive areas of the Golf of Finland

Grid of points with 100 m x- and y-spacing

18 radial lines from each point

The task:

Clip more than 10,000,000 line,

with a 150,000 vertex polygon (simplified)

Solved using:

PySAL: a library of spatial analysis functions (to create the radial lines)

PostGIS: a spatial database extender for PostgreSQL (to clip the lines

and calculate the openness of each point)

12

8.1.2019

Anas Altartouri

Motivating example 3
Programming for workflow automation & tailoring

A machine learning based cellular

automata model of species

distribution

Utilizing multiple functions written in

different languages and available in

different software packages

• GNU Octave: language for numerical
computations

• NumPy: Python extension that provides
support for large, multi-dimensional
arrays and matrices

• R: software environment for statistical
computing and graphics

13

8.1.2019

Anas Altartouri

What kind of programming?

Programming directly in a console

Perform a sequence of processing/computing tasks

Writing a program/script

Run a sequence of processing/computing tasks (a piece of code)
frequently, e.g.:

- Run some models with various input parameters and/or datasets

- Run a routine frequently with different datasets

Developing an application software

Allow interaction with your program/script, e.g.:
- To avoid editing variables in the code every time you run it

- To publish your code and provide an application software

8.1.2019

Anas Altartouri

14

Program in
a console

Write a
program/script

Develop an
application

We will try all

in the

exercises!

What kind of programming?
Programming directly in a console

Perform a sequence of processing/computing tasks, e.g., with:

• R, Matlab, Python, Bash (Unix shell, a command-line interpreter)

 Know the language

• Syntax

• Data types (Boolean, numeric, string, arrays, spatial data types, etc.)

• Control flow (conditions, iterations, function calls)

 Use software libraries

• What libraries are available

• Understand the libraries’ APIs (application programming interface)
- Example: matplotlib histogram function

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html#matplotlib.pyplot.hist

8.1.2019

Anas Altartouri

15

Program in
a console

Write a
program/script

Develop an
application

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html#matplotlib.pyplot.hist

8.1.2019

Anas Altartouri

16

What kind of programming?
Writing a program/script

Run a program consisting of a sequence of

processing/computing tasks

 Know the language

• Compiled (compile & link)

• Interpreted
Read more: http://www2.hawaii.edu/~takebaya/ics111/process_of_programming/process_of_programming.html

 Structure your code

• Procedural

• Object-oriented
Read more: https://www.cs.utah.edu/~germain/PPS/Topics/oop.html

8.1.2019

Anas Altartouri

17

https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zappldev/zappldev_85.htm

Program in
a console

Write a
program/script

Develop an
application

http://www2.hawaii.edu/~takebaya/ics111/process_of_programming/process_of_programming.html
https://www.cs.utah.edu/~germain/PPS/Topics/oop.html

8.1.2019

Anas Altartouri

18

a_l = 4 #length in meters
a_w = 3 #width in meters
a = (create_a_rectangle_with_l&w

…
…
…)

a_area = a_l * a_w
a_perimeter = 2 * (a_l + a_w)

b_l = 5
b_w = 2
b = (create_a_rectangle_with_l&w

…
…
…)

b_area = b_l * b_w
b_perimeter = 2 * (b_l + b_w)

def create_a_rectangle(l, w)
rectangle = (create_a_rectangle_with_l&w

…
…
…)

return rectangle

def area(l, w)
a = l * w
return a

def perimeter(l, w)
p = 2 * (l + w)
return p

a_l = 4
a_w = 3
a = create_a_rectangle(a_l, a_w)
a_area = area(a_l, a_w)
a_perimeter = perimeter(a_l, a_w)

b_l = 5
b_w = 2
b = create_a_rectangle(b_l, b_w)
b_area = area(b_l, b_w)
b_perimeter = perimeter(b_l, b_w)

* 100

Cleaner code

Easier to maintain

8.1.2019

Anas Altartouri

19

class Rectangle:

def __init__(self, l, w)
self.length = l
self.width = w
(create_a_rectangle_with_l&w … …)

def getArea(self)
a = self.length * self.width
return a

def getPerimeter(self)
p = 2 * (self.length + self.width)
return p

a_l = 4
a_w = 3
a = Rectangle(4, 3)
a_area = a.getArea()
a_perimeter = a.getPerimeter()

b_l = 5
b_w = 2
b = Rectangle(5, 2)
b_area = b.getArea()
b_perimeter = b.getPerimeter()

l

W

Rectangle

length
width
…

__init__()
getArea()
getLength()
…

l

W

Class

ObjectObject

l

W

8.1.2019

Anas Altartouri

20

Rectangle

Attributes

Methods

Polygon

Triangle

Line

Geometry

Hexagon

getCentroid()
getBoundingBox()

getArea()
getPerimeter()

getLength()

Object-oriented programming &
Unified Modeling Language (UML)

Unified Modeling Language (UML)

“A general-purpose, developmental, modeling language in the field
of software engineering, that is intended to provide a standard way to
visualize the design of a system. ”1

8.1.2019

Anas Altartouri

21

1 https://en.wikipedia.org/wiki/Unified_Modeling_Language

13 diagrams of two types:

Structural UML diagrams, e.g.:

• Class diagram

• Package diagram

• Object diagram

Behavioral UML diagrams, e.g.:

• Activity diagram

• Sequence diagram

• Use case diagram

More about object-oriented programming and UML:
https://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html

https://docs.oracle.com/javase/tutorial/java/concepts/

https://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/

What kind of programming?
Developing an application software

Allow user interaction with the application!

• Command-line or GUI

• Stand-alone or extension

• Desktop or web

Software engineering and system development

• Analysis and design, architecture, prototyping

• Evaluation, usability engineering

• Human–computer interaction

More in the following lectures!

8.1.2019

Anas Altartouri

22

>_

$ circle.py -p perimeter -r 5
31.4
$ circle.py -p area -r 1
3.14

Program in
a console

Write a
program/script

Develop an
application

Terms

Variable

Data type

Control flow

Subroutine, function

Software library, module

Class and objects

Attributes

Methods, parameters

Events and listeners

8.1.2019

Anas Altartouri

23

What kind of programming?

Application software

Information system

Distributed systems

8.1.2019

Anas Altartouri

24

Presentation layer

Application logic layer

Resource management layer

CPU

MEMORY

CPUCPUCPU

Presentation layer

Application logic layer

Resource management layer

CPU

MEMORY

CPU

MEMORY

CPU

MEMORY

CPU

MEMORY

CPU

MEMORY

Network

Processing,

computing

User interface

Tools

Virtual machines1

• Host OS – the operating system of the physical computer1

• Guest OS – the operating system running inside the virtual machine1

• VM – the environment that the hypervisor creates for the guest OS1

Containers2

“A container image is a lightweight, stand-alone, executable package of
a piece of software that includes everything needed to run it: code,
runtime, system tools, system libraries, settings”2

Notebooks – CSC: https://notebooks.csc.fi/#/

8.1.2019

Anas Altartouri

25

1 https://www.virtualbox.org/manual/ch02.html
2 https://www.docker.com/what-container

Image source: https://www.docker.com/what-container (2018)

https://www.virtualbox.org/manual/ch02.html
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container

Tools

“Why is virtualization important?

• Running multiple operating systems simultaneously

• Easier software installations

• Testing and disaster recovery

• Infrastructure consolidation”1

Run the VM

• Locally

• On the cloud

8.1.2019

Anas Altartouri

26
1 https://www.virtualbox.org/manual/ch02.html

Tools

A VM example:

• OSGeo-Live – “A self-contained bootable DVD, USB thumb drive
or Virtual Machine based on Lubuntu, that allows trying a wide
variety of open source geospatial software without installing
anything.”1

A Notebook example:

• Jupyter – “The Jupyter Notebook is an open-source web
application that allows you to create and share documents that
contain live code, equations, visualizations and narrative text.”2

27

8.1.2019

Anas Altartouri

1 Source: https://live.osgeo.org
2 http://jupyter.org/

https://live.osgeo.org/
http://jupyter.org/

Demos …

Scripting in a console …

A command-line program …

A desktop extension …

A web application …

CSC notebooks …

Virtual machines …

Locally …

On the cloud (CSC’s cPouta cloud service) …

8.1.2019

Anas Altartouri

28

Exercise

Reading material

1. Sommerville, I. (2015). Software Engineering (10th edition). Pearson.
Read Chapter 1: Introduction, available from:
https://www.dropbox.com/s/b8u3j74fkigb5vd/Ch01%20Introduction.pdf?dl=0

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V. (2003). Web services:
Concepts, Architectures and Applications. Springer, Berlin, 354 p.
Read Chapter 1: Distributed Information Systems, available from
the course web page.

29

8.1.2019

Anas Altartouri

https://www.dropbox.com/s/b8u3j74fkigb5vd/Ch01 Introduction.pdf?dl=0

Exercise

Questions

1. Indicate the three layers of an information system and describe the role
of each layer in the system.

2. Find a software library from your field. Explore:

- What purpose the library serves..

- What language in which it is written..

- Whether bindings are available for the library in other languages.

Find a function that the library provides. Explore:

- What the function does..

- What arguments (parameters) it requires..

- What result it returns.

 You are not required to submit any report for this exercise!

30

8.1.2019

Anas Altartouri

