### Vacuum surface engineering

#### 1. Surface phenomena

2. Surface energetic ion interaction



# Surface energy



Low-index surface



High-index surface consisting of low-index facets

$$\gamma(\mathbf{n}) = \frac{dW}{dA}$$

γ surface tension = *dW* work needed to form surface *dA* 

In thermodynamic equilibrium:

$$\int_A dA \, \gamma(\mathbf{n}) = \min.$$





$$\gamma_{SG} = \gamma_{SL} + \gamma_{LG} \cos \theta$$

Young equation S solid L liquid G gas

$$S = \gamma_{LG}(\cos\theta - 1)$$

Spreading parameter *S* Complete wetting when  $S \approx 0$ non-wetting when  $S \approx -2 Y_{LG}$ 



### Surface reconstruction







### Surface structure and defects





Jari Koskinen 5





Chemisorption



Kuva 12.1. Lennard-Jones-diagrammi.



## Adsorption

#### **Physisorption**

•Chemical bonding:

•polaroization (van der Waals)

•Bonding energy ≈ 0.001 – 0.5 eV
•Bond length ≈ 3 – 10 Å
•For example: nobel gas or molecules on materials
•Possibly precursion state before chemisorption





Kuva 12.1. Lennard-Jones-diagrammi.

### Adsorption

#### Chemisorption

Chemical bonding:

charge exchange

Bonding energy ≈ 0.5 - 5 eV
Bond length ≈ 1 - 3 Å
For example: H, O, N, CO on metals
Dissociation of molecule
Final absorption





rersity Chemical 39

Kuva 12.1. Lennard-Jones-diagrammi.



Adsorbed molecule receives energy E<sub>D</sub> in order to leave surface • thermal • radiation

- photons
  - electrons
  - ions
  - electric field



2. Excitation of the substrate-adsorbate complex



### Balance of absorption - desorption



• very little adsorption in UHV



Kuva 9. Tarttumiskertoimen riippuvuus pinnalle adsorboituneiden atomien tiheydestä tapauksessa, jossa typpimolekyylit  $N_2$  adsorboituvat volframin kidepinnoille.

### Surface diffusion



http://iramis.cea.fr/spcsi/Phocea/Vie\_des\_labos/Ast/astimg.php?voir=60&type=groupe





- Diffusion is thermally activated random movement of adsorbed atoms
- $\mathbf{D} = \mathbf{D}_0 \, \mathbf{e}^{-\mathbf{E}_{act}/kT}$



http://iramis.cea.fr/spcsi/Phocea/Vie\_des\_labos/Ast/astimg.php?voir=60&type=groupe



## Work function

- Work function φ
- E<sub>F</sub> Fermi energy
- D dipole potential





o University ool of Chemical hnology

#### Work function of some metals

| Element | eV        |
|---------|-----------|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Ag:     | 4.52-4.74 | AI:     | 4.06-4.26 | As:     | 3.75      | Au:     | 5.1-5.47  | B:      | ~4.45     |
| Ba:     | 2.52-2.7  | Be:     | 4.98      | Bi:     | 4.34      | C:      | ~5        | Ca:     | 2.87      |
| Cd:     | 4.08      | Ce:     | 2.9       | Co:     | 5         | Cr:     | 4.5       | Cs:     | 2.14      |
| Cu:     | 4.53-5.10 | Eu:     | 2.5       | Fe:     | 4.67-4.81 | Ga:     | 4.32      | Gd:     | 2.90      |
| Hf:     | 3.9       | Hg:     | 4.475     | In:     | 4.09      | lr:     | 5.00-5.67 | K:      | 2.29      |
| La:     | 3.5       | Li:     | 2.93      | Lu:     | ~3.3      | Mg:     | 3.66      | Mn:     | 4.1       |
| Mo:     | 4.36-4.95 | Na:     | 2.36      | Nb:     | 3.95-4.87 | Nd:     | 3.2       | Ni:     | 5.04-5.35 |
| Os:     | 5.93      | Pb:     | 4.25      | Pd:     | 5.22-5.6  | Pt:     | 5.12-5.93 | Rb:     | 2.261     |
| Re:     | 4.72      | Rh:     | 4.98      | Ru:     | 4.71      | Sb:     | 4.55-4.7  | Sc:     | 3.5       |
| Se:     | 5.9       | Si:     | 4.60-4.85 | Sm:     | 2.7       | Sn:     | 4.42      | Sr:     | ~2.59     |
| Ta:     | 4.00-4.80 | Tb:     | 3.00      | Te:     | 4.95      | Th:     | 3.4       | Ti:     | 4.33      |
| TI:     | ~3.84     | U:      | 3.63-3.90 | V:      | 4.3       | W:      | 4.32-5.22 | Y:      | 3.1       |
| Yb:     | 2.60 [2]  | Zn:     | 3.63-4.9  | Zr:     | 4.05      |         |           |         |           |

#### Adsorbed atoms alloying effect work function



### Solubility of gasses (hydrogen) into metals



Kuva 7. Vedyn liukoisuuden riippuvuus lämpötilasta eräillä metalleilla ( $P_{H_2} = 10^5 Pa$ )<sup>3</sup>.



### Vacuum surface engineering

- 1. Vacuum technology
- 2. Surface phenomena
- 3. Surface energetic ion interaction



### **Energetic ion surface interactions**





### **Secondary electrons**





### **Desorption**, cleaning









### **Collision cascade, thermal spike**



K. Norce Alto University School of Chemical Technology

#### 10 keV Au ion to Au surface

http://en.wikipedia.org/wiki/File:10kevau \_au.gif

#### **HY Nordlund simulations**

http://beam.acclab.helsinki.fi/~knordlun/ anims.html

http://beam.acclab.helsinki.fi/~knordlun/ gif/au500.avi



## doping, compounds





