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1 III-V’s for LEDs

2 Electrical and optical properties

Outline

P. Bhattacharya: chapter 5
J. Singh: chapter 9
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Eye sensitivity function and luminous 
efficacy
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Output power of 
the LED in lumen

• Definition of lumen: 
Green light (555nm) 
with power 1W has 
luminous flux of 683 
lm

•Efficacy defines 
how well a LED 
converts electrical 
power into visible 
light; it gives number 
of lumens per optical 
watt

• Candela cd=lm/str 
(luminous flux per 
unit solid angle)
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Efficacy of classical light sources
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LED Efficiency

Blue-UV  LED 
with phosphor, 
theoretical
limit ~280 lm/W
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Internal and external quantum 
efficiency

• External quantum efficiency ηext

Number of photons emitted per secondηext = Number of electrons injected per second

ηint =
Number of electron-hole pair recombination per second

Number of electrons injected per second

• Internal quantum efficiency ηint

Typically ηint > ηext
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Evolution of LED performances
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GaAs LEDs
• GaAs is a direct bandgap semiconductor with Eg = 1.44eV (860nm)
• First demonstration in 1962 by Radio Corporation of America, 

General Electrics, IBM and MIT
• Hereafter, small number of GaAs LEDs emitting at around 870nm 

sold by Texas Instruments for 130$ a piece. External efficiency 
ηext=0.2%

• Efficiency of GaAs can be improved by doping with silicon. Si is an 
emphoteric dopant for GaAs (it can act as a p or n dopant)

• In Si-doped GaAs LEDs the main radiative transition is between the 
conduction band and the Si acceptor level (λ= 910-1020nm)

IR

ηext = 10%

EC

EV
ESi

No reabsorption by GaAs 



GaP and GaAsP LEDs
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GaP and GaAsP LEDs 

• GaP is an indirect bandgap with Eg = 2.26eV 
(549 nm = green)

• GaAs1-xPx is a direct semiconductor for x<0.45
• At x=0.35 the band gap is about 1.97 eV (630

nm = orange)
• Radiative recombination in indirect GaAs-xPx can

be enhanced by introducing radiative deep
impurity levels (N complexes or Zn-O defects)!

• The spread of the impurity states in k-space allows transitions to
band edges without phonons
• Oxygen produces a deep donor level 0.8 eV below the CB, together
with Zn it forms a trap with a binding energy of 0.3 eV. Bound exciton
associated with this level produces emission at 640 nm.
• N-N complexes result in yellow emission at 590 nm.



Deep level mediated radiative 
recombination

Real space Reciprocal space

Heisenberg uncertainty principle: !³DD px
If a charge carrier is well localized (Δx small) then its 
momentum can take a wide range of values

© E. Fred Schubert 

No phonons are needed for transitions between impurity states and 
band edges!  à this increases the radiative efficiency of indirect 
bandgap semiconductors
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N-doped GaAsP and GaP: 
band structure

Nitrogen complexes in GaAsP system form a radiative deep level or 
recombination centers or isoelectronic traps. 

Direct gap GaAs Crossover 
GaAs0.5P0.5

Indirect-gap GaP

N level
N level

N level

kkk GG X X G X

E



GaP and GaAsP LEDs

© E. Fred Schubert 
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GaAsP and GaP LEDs



The Texas Instruments 
programmable pocket calculator 
Model SR-56 was manufactured 
for the first time in 1976. The 
seven-segment numeric 
characters of the display are 
made of red GaAsP diodes 

Displayed number were 
not visible in daylight

LEDs consumed so much 
power that rechargeable 
batteries were required

GaP and GaAsP LEDs



GaP and GaAsP LEDs

AT&T telephone set ”Trimline” has a dial pad 
illuminated by two GaP:N LEDs

1968: first GaP:N LED emitting at 550nm. 
External efficiency: 0.3% 
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Cross section of a 
AlGaAs/AlGaAs LED on GaP 
(Woodall et al., 1972)

AlGaAs LEDs 
• The ternary compound AlxGa1-xAs has only a small lattice 

mismatch with GaAs. Therefore AlGaAs diodes are grown on 
GaAs. However GaAs is absorbing since it has a smaller 
bandgap than AlxGa1-xAs

• AlxGa1-xAs can also be grown on GaP at the cost of misfit 
dislocations which reduce the internal efficiency

Luminescence from the AlGaAs active 
layer is visible through the transparent 
GaP substrate

IR



AlGaAs LEDs IR
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• For Al0.4Ga0.6As/Al0.7Ga0.3As heterojunctions ηint ~ 100%, l ~ 
650nm. The emission from the p-doped Al0.4Ga0.6As layer is NOT 
absorbed by the Al0.7Ga0.3As layer which has a larger bandgap. 

• AlGaAs/AlGas are still used in video and audio remote 
controls and as sources for short-haul communication 
networks. 2.2

AlGaAs LEDs 
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AlGaInP LEDs

(Chen et al., 1997)
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AlGaInP LEDs
• AlGaInP LEDs are the most powerful red, orange LEDs on the 
market, they are used a lot in luminous signalisation.

•(AlxGa1-x)0.5In0.5P is lattice-matched to GaAs

• However GaAs has a smaller bandgap than (AlxGa1-x)0.5In0.5P, 
therefore it is reabsorbing the emitted light in AlGaInP/GaAs LEDs

• The GaAs substrate can be removed and replaced by transparent 
GaP by bonding 

AlGaInP grown by epitaxy on 
GaAs (absorbing substrate)

AlGaInP wafer bonded on GaP 
(transparent substrate)
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III-V Nitrides UV

© E. Fred Schubert 
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III-V Nitrides UV

© E. Fred Schubert 
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GaInN/GaN LEDs

Applications: 

After a decade of intense research, a 
GaN based blue LED was 
successfully produced by Nichia 
Chemical of Japan in 1994

CD/DVD
displays
white LEDs
remote sensing

image scanners
color printers
biomedical diagnostic 
instruments

Green traffic lights made of 

GaInN/GaN LEDs 



Luminous efficiency of visible-spectrum 
LEDs
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Blue LEDs - structure
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LED construction
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InGaN/GaN LEDs @ Micronova
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2014 Nobel Prize in Physics

“for the invention of efficient blue light-
emitting diodes which has enabled 
bright and energy-saving white light 
sources"

AkasakiAmano Nakamura
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Outline

1 III-V’s for LEDs

2 Electrical and optical properties
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Forward bias

Electron-hole pair 

recombination

+ -

p n

In general LEDs are optimized so that radiative recombination 

takes place on the p-side of the junction (injected minority 

carriers, electrons, will recombine with the majority carriers, 

holes, near the surface).

To be able to modulate the output, it has to be possible to 

modulate the injected carriers.

A key issue in the device speed is the time taken to extract the 

charge. The time is controlled by the carrier recombination time.
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Recombination rates in p-doped layers

• Radiative recombination rate:

rad
POsp

nBnpR
t

==

Coefficient for band-to-band 
recombination (cm3.s-1)

nCpR POAuger
2=

Auger recombination coefficient (cm6.s-1)

PO
rad Bp

1
=t

AnRtraps =

Shockley-Read-Hall recombination coefficient (s-1)

• Shockley-Read-Hall recombination at defects and traps:

• Auger recombination rate:



ELEC-E3210 Optoelectronics

Electron lifetime
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Spontaneous emission

EV

EC

hn

Generates photons

Useful in Light Emitting 
diodes (LED)

1. Transitions from many energy levels 
contribute to the radiation à wide 
spectral width

2. Photons radiate in arbitrary directions
à low efficiency of current-to-light 
conversion and relatively low output 
power

3. Photons propagate within a wide cone 
(poor directiveness)

4. Photons are created independently of 
one another à no phase correlation 
and incoherent light
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Theoretical emission spectrum
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( ) exp( / )gI E E E E kTµ - - Energy value at maximum: gg EkTE »+ 2/

Bandwidth:
21.8

1.8  or 
kTE kT
hc
llD = D =

© E. Fred Schubert 

at room temperature

For GaAs LED @ 870 nm

46  or 28 nmE meV lD = D =
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LED emission spectra

Green emitters have broadest emission lines and need further development.
Typical linewidths broader than the theoretical 1.8 kT.
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Low-level injection

Equilibrium (VA = 0)
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Minority carrier concentration profile under 
forward bias

x
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Total current density

np x

N
h

x

P
ehe dx

pd
qD

dx
nd

qDJJJ
D

-
D

=+=
-

• Total current flow in the depletion region:
• The total current flow is constant over the junction

xxn-xp

Je

J = Jh + Je

Jh

Forward
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I-V curve
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Continuity equation

Electron generation
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Electron induced current density
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We suppose that the p-layer is thick enough so that all injected 
electrons recombine before reaching the contact layer.
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Output power
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Injection efficiency
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The injection efficiency is the ratio between the number of electrons 
injected in the active layer (p-layer) per second and the total current: 
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Injection efficiency
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External quantum efficiency
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Although the internal quantum efficiency of some LEDs may approach 
100%, external efficiencies are considerably lower. It is because some of 
the radiation remains trapped in the LED due to total internal reflection
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The light escape cone
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Lambertian emitter
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Far-field patterns

”Natural” LED has a 
planar surface

Die shaping can
change emission
pattern
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Temperature dependence of emission intensity


