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Photodetection process

1. Absorption of optical energy and generation of carriers

2. Transportation of photogenerated carriers across the absorption
region, with or without gain

3. Carrier collection and generation of a photocurrent

Performance requirements: Common applications:

- high sensitivity -Optical communications

- low noise -Monitoring laser transmitters
- wide bandwidth

- high reliability

- low cost

- high speed (in communications)

- high gain
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Photodetector types

« Goal: converting the energy of absorbed photons into a measurable electrical
voltage

* 3 main types:

Photoelectric Thermal Semiconductor
detectors detectors detectors

©Mazur and Friend, Harvard University

©O0Ophir Optronics Inc.
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Semiconductor photodetectors

 Photoconductors: based on conductivity variations

 Photodiodes: based on junction properties
* PN-diodes (ex: solar cells)
* PIN-diodes (no gain, but large bandwidth)
» Avalanche photodiodes (APD)
* Phototransistor
» Schottky photodiode (metal-semiconductor)

« Bandgap engineered photodetectors
* Quantum well infrared photodetector (QWIP)
» Staircase avalanche photodiode

of Electrical
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Photodetection mechanisms
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Fipure 8.1 Different mechanisms of photodetection: (a) for intrinsic hght

(hv 2 £,); (b) for extrinsic light uulmng a deep level; and (c) for extrinsic
light utilizing intersubband transitions in a quantum well.
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Efficiency and responsivity

]ph/q

Quantum efficiency n=

(external) B Bnc ! hv

noc(l—e_ad)

Pinc = incident optical power
l,n = photocurrent
a = absorption coefficient

d = thickness of the active region

Responsivity

1
R: ph :quni(ﬂm)(A/W)

P hv 1.24

inc

Cut-off due to =
large a

a depends on wavelength!

Responsivity, R

Cut-off due to
absorption edge

Ideal

photodetector ,

M=) =——=

\

Wavelength, A
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Photoconductor

(@
Note: only photon
energies above
the bandgap will
be efficiently
absorbed!

Area A

 Optical electron-hole pair generation changes the conductivity of a

semiconductor material
« Materials: Si, Ge, PbSe, PbS, CdSe, HgCdTe, PbSnTe, InGaAs (mostly IR)

« Cheap (from 5%)
 Applications: security alarm, street lights, IR-astronomy, IR-spectroscopy
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Photoconductor efficiency

Electron-hole pair

generation rate (s cm_ I_GV—I
"B i

Number of incident photons/second

(External) quantum Device volume

efficiency:

Power

transmitted: P =P(a’) —p o4

trans

Optical power »
absorbedinthe £, =F,.—F .. =F,. (l—e )

trans n
detector:
Internal quantum 7. = Gy 77_ y
efficiency: P, /hv (1 e )
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Photoconductor current

Excess carrier concentration:
An=Ap = lTG

Carrier recombination
lifetime

Corresponding variation of
conductivity: Ao =qAn (lLle T :Uh)

Photogenerated current:

Device cross-section Electric field

| |
l,=J,A=AcAE= qAn(,ue + U, )AE
Bias voltage (do not

= qA”(ﬂe _|_luh) %— mix with volume Vy !)
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Photoconductor gain

Photogenerated current:
[, = qAn(,ue + 4, )AE

Electron velocity v, and electron transit time 7,

wE mmy t = ﬂE ‘E—

lue tr

I, =qAn (:Ue'l‘:uh)AE

I -, :(ze ](H - )qGVV

An =1G E = r He

e

/J ettr

________________________________________________________________________________________________________________________________|]
A” aalto University ELEC-E3210 Optoelectronics

Engineering



Photoconductor gain

Photogenerated _ M,
current L, = (te ][1"" P quVV

tr

Number of photogenerated
charges per second (= current [, =qGV,
directly generated by photons)

_ _ 7] GV, 1 w4
-]ph = qGV,T, =gP Erg-” __Gh ( j

P . /hv T P . /hv
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Photoconductor gain

1¢ = L :> f; decreases with the electric field

M E
N t; >> T tt},l, >> 7 (small bias V)

Electrons (and holes) are slow and recombine before they drift
through the detector

) I~ — L1
e ttr
mi <7 tﬂ, > T (moderate bias V)

Holes are slow and recombine before they drift through the detector,
but electrons get re-injected

) I = t_>1

"t <t t <7  (very large bias V)
Theé current do not longer obey Ohm’s law (Space-charge limited currents)

:> I' =1
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Photoconductor: responsivity

(Current) responsivity for a photoconductor:
R, = L _Lemg _ T2
P hv 1.24

inc

* Like quantum efficiency n, responsivity is a common figure of merit expressing
the efficiency of a photoconductor.

« For photoconductors ().5 <R ;< 100 at peak responsivity
wavelength.

 Voltage responsivity is also commonly used:

inc
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Frequency bandwidth

Let’'s assume that the incident light signal can be divided into two
parts: a constant part and an amplitude-modulated part.

_ jort
|:> Pz’nc o PO + Pl €
Jjort

G=G,+Ge
For the light generated carrier density An ~ d(A4n) G An
holds the rate equation: At :
d(An N I An
|:> ( ):GO+Gle]()r__
dt T
G, ot
Mn=G. r(l—e " Yo —— (97 — 7"
|:> 0 ( ) 1+j(,)z'( )
Under steady-state t >>1 I:> An= G, 1+ G &7
0 l+jor
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Frequency bandwidth

:> Photocurrent: iy, = I + i I =qP R/
e
oT
DC AC i = qP nrt ée
l vl 1+ jor

L

Cut-off frequency (bandwidth), £, is defined as the frequency at which wt =1

1
Ko ain: T

27T =
tr
: : 1 7 1
Gain-bandwidth product I/, = e
in photoconductor: 27T 1, 27t

:> The gain-bandwith product can be increased by reducing
elecron transit time i.e. the spacing between contact
electrodes!
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Photoconductor: parameter optimization

For maximum quantum
efficiency:

* Antireflection coating

* Thick absorbing layer

For large bandwidth:

« Small recombination time

* Thin absorbing layer

For maximum bandwidth-gain:

product:

Fg:Le B:L
. T, 2ﬂq/
]
BxI =

2t
Interdigitated electrodes are
used in order to reduce 1,

, , Aalto University
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| 4

Semiconductor

Insulating substrate
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Photoconductor current
I(t)=1,,+1,+1;+iy(?)

* The dark current [, is the current through the device when P,,.=0

,
1, =q(pn+pu,p)A -

I is relatively large for photoconductors
* /5 = background current. Can be reduced using optical filters

* The photocurrent noise i,(?) has different origins

I(2) 1

IV\MAAMWN\MWW (@) =1, +1,+1,

" time
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Noise in photoconductors

[(t)=1,,+1,+1,4i,(t)

Thermal noise — 4k, TB——

_ I Bandwidth
(=Johnson noise) J _

RL Load resistance
Shot noise
(=generation- 172 B 4qulﬂB\ _Steady—state light-
recombination noise) % 14 4272 induced output

current

f << 1/2nt : = igr is almost independent of f

f>1/2nt : = igr declines with increasing f with a 1/f2
dependence

:> Johnson noise dominates at high frequencies!

At frequencies less than 1kHz, flicker noise (1/f noise)
becomes important.
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Noise in photoconductors

Flicker noise arises from surface and interface defects
and traps in the bulk of the semiconductor

Can be reduced by a reduction of the
operating temperature (should be less than Eg4/25kg )

: Random motlon of carriers
!
I
|
|
r

Log(noise current)

1/ noise Generation-recombination
noise ' Johnson
" noise
Log(frequency)
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Signal-to-noise ratio + NEP

« Signal-to-noise ratio (SNR):

2 2 -1
5 L A { kT(1+a)7)GC}
I'cq 1,

N Zz z+zGR ~ 8Bhv

SNR is inversely proportional to the bandwidth!

* Noise equivalent power (NEP): incident rms optical power required to
produce a SNR = 1 for a bandwidth of B=1Hz. NEP is a measure of the
minimum detectable signal.

1

* The detectivity D is a measure of the detector sensitivity: D —_ (W)

Normalized or specific detectivity D: [D* = ———

NEP (cm.HzV2W-1)
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Specific detectivity D*

Specific detectivity

1015 CdS ‘, |
(300K)
104 \ \Ideal D*
Ideal D* (77K) P
/1\013- Sj /\ \\(\3OOK) \\\ P p
> (300K)Ge:Au  'InSb (77K) PD ’ GaAS
: PD (77K 4 2K
gN 10[2 Gahs | )/\ \\ Pb:Te )
T (300Ky” ™\ (77K) Ge Ga
c PD PbS (7
S100 /b(\l—lngTe (77K) InSb (1.5K)
Ge:Ni Sl =
(77K)  InSb (77K) 2K)GeLn
1010 ﬂ/\\m )gt 2)
1 10 100 1000
0.1 Wavelength (um)
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PN Photodetector

-+ Operated under
|| reverse-biased
| conditions!

Electrode
R. |VL
\_ _
" i
Pl n
I I
= i R

Antiljeflection ( | \i\ \ Electrode

coating

Depletion region

The photogenerated carriers in the depletion region are accelerated
in opposite directions by the reverse bias - photocurrent

School of Electrical
Engineering
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PN Photodetector

N
Photoexcitation is
] detected as an increase
in the reverse-biased
current
-
v
_IS — o V
®=0 (dark current) /
_— . gV IksT )_
I=1Ie -1,
Increasing light Dark
intensity current
Small dark current compared to photoconductors higher sensitivit
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PIN Photodetector

 Reverse bias operation! » dark current is very small
* no internal gain » shot noise is small compared

to photoconductors

Antireflection

coating , :
Depletion region

Possibility to control the depletion layer width!
! Bandwidth and quantum efficiency can be optimized separately
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PIN Photodetector

Bandwidth and quantum efficiency can be optimized separately:

- For high response speed, make the depletion layer width small
- For high quantum efficiency or responsivity, make the width large

* Very large bandwidths can be attained

* The response speed and bandwidth are limited by either transit
time effects or by circuit parameters. The transit time can be
reduced by reducing the thickness of the i-layer.

 Lowering of the response speed due to diffusion of carriers
created outside the i-region can be minimized by fabricating the
junction close to the illuminated surface
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PIN Photodetector
D

(@

We suppose that
there is no

absorption in the
p-region! J = Jgrire + Jair

® rift

I Diffusion
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PIN detector: drift current

Photon flux:

—ax Bnc 1-0 ) —ax
D,(X)=ge " = ilhv e

Generated electron-hole pairs per volume per second G(x):

dq)Ph mc(1 @ )

PR T

G(x)=n,

Drift current;

w
J o =—4[ Gdx =—qn g, (1-¢ ")
0

W = width of the i-layer
Or = reflectivity of the top surface
$o = incident photon flux (photons/sec/cm?)
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PIN detector: diffusion current

Light absorption in the n-region generates a diffusion current
density J,, of minority holes oriented towards the depletion
region.

Continuity equation on the n-side:

0’ — 0
D, 1721\/ _ Py~ Pno 1 G(x) = P
Ox T, Ot
o Op
At quasi-equilibrium: —* =0
Ot (all holes at the very
_ t — edge of the depletion
Boundary conditions: py=0at x=W region diffuse)

Py = Pno at X=TC (normal
concentration far

away from the
depletion region)

School of Ele
Engineering
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PIN detector: diffusion current

Solution of the continuity equation at quasi-equilibrium:
—aW \ \W-x)/L —ox
P :pNO_(pNO‘l'Ce )e( M+ Ce

Diffusion length: Lh — /th-h

From the boundary conditions:

2
C — 77i¢0aLh
D,(1-a’L})
Diffusion current on the n-side:

op al,
Jdif =—qD, ( ~ j =—qn.¢, e - qP o

|
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PIN detector: total current

—aW
e
J=dpin ¥y =—aN9 | 1-

it = ’ l+al,

External Quantum efficiency: Pwo 18 typically very small

‘J/q‘ e_aW
Newe =11 = i(1_®R) 1-

Pinc / Ahv 1+ aLh Typically n; = 1

In order to attain a high external quantum efficiency:
* Or =20 (realized in practice by antireflection coatings)

«aW >>1 (If W is too large—> transit time becomes large and device
speed is reduced. Also in most semiconductors a at the bandedge is
determined by the bandstructure and cannot be changed)

School of Electrical
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Practical PIN photodiodes: structures

aW >|

{7l Top contact

p *InAlAs

/ i - InGaAs \

/ n* InGaAs \

it

n* InP = ~

| fipLite) TR 1hv
® (ii)

The bandedge absorption coefficient can be enhanced by using strained

quantum well materials in the i-region. Excitation through an etched hole

reduces the active area of the diode.

School of Electrical
Engineering
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PIN photodetector: responsivity

P hv 1.24

inc
Like the quantum efficiency n, the responsivity is a common figure of merit

expressing the efficiency of a junction photodetector.
1

0.9
0.8
0.7 —
0.6
0.5
0.4
0.3—_
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0.1—

0

(A/W)

Maximum absorption

reached for A<Ag4 due to
indirect bandgap

Si Photodiode

Responsivity R(A/W)

0 200 400 600 800 1000 1200
Wavelength A gnmz
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PIN photodetector: noise

Thermal noise ~, 4k, 1B Bandwidth
(=Johnson L, = R |
noise) eq Resistance of

. the diode circuit
Shot noise
(=generation- T2 _ ) ([ Y )B
recombination S q\Lpn T T1p
noise)

Signal-to-noise ratio:

l(qnf’mj
i 20 hv
SNR=-—2 _—

<112V(t)> Zq(lph+ID+IB)B+

4k, TB
R

eq
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PIN detector: noise and sensitivity

For most of PIN photodetectors the dark current is very
small and the shot noise is small compared to that in
photoconductors. The Johnson noise dominates:

i’ >>0’
The minimum detectable power (NEP):

1/2
NEP =" 2¢(1,,+1, +IB)+4k—T

qn R,

(W.Hz112)

To improve the sensitivity of the PIN detector n and R, should
be as large as possible, and the unwanted currents Iz and Iy as
small as possible.
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|-V characteristics and circuit model

U (E)

Photovoltaic
mode
(solar cell)

A I.= Dark current
Equwalent circuit R. .= Photocurrent
c.= Diode capacitance
- 1] R.= Parallel resistance
he .= Noise current
l R.= Series resistance
“ideal Diode R = Load resistance
U.
E\ \ RL:>OO f
E, \ \
£ — Photodiode
" ' mode \ \
E, \
R, <<R.
E, Light intensity I,_(EM

E <E,<E.<E,<E.

|-V characteristics of
a photodiode. The
linear load lines
represent the
response of the
external circuit:
|=(Applied bias
voltage-Diode
voltage)/Total
resistance. The
points of intersection
with the curves
represent the actual
current and voltage
for a given bias,
resistance and
illumination.
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