
PHYS-E0566 - Advanced course in plasma physics with computational emphasis 1. Exercise

1. Debye length
As mentioned in the lectures, shielding of the bare charges in the plasma is of fundamental importance to
the interactions and, thus, to the behaviour of the plasma as a whole. The shielding is characterized by the
Debye length and you shall derive the expression for it in two different ways in this exercise.

a) Shielding of an individual charge. Solve the expression for the perturbation potential due to a point
charge qδ(r) in an electron-proton plasma that is in a thermal equilibrium. The densities of the plasma
species are

na(r) = n0e−qaΦ(r)/kT ,

First, write down the Poisson’s equation, then perturb the system with an additional charge, qδ(r),
and use Taylor expansion for the densities around the equilibrium. You should obtain an differential
equation for the perturbation potential with a delta-function source at the origin. Solve this equation
using spherical coordinates to get the result

δΦ =
q

4πε0r
e−r/λD

b) Shielding at material surfaces: width of the sheath region in front of a probe. Let us consider
a 1-dimensional case, where a potential Φ0 is imposed at x = 0, representing an infinitely small probe
(in 1D, a plate). We have to find how this potential decays as one moves away from the plate, i.e., Φ(x).
You can assume ions fixed, and you know that the electron velocities in an electrostatic field given by
potential Φ(x) are distributed according to f(v) = A exp[−( 1

2mv
2 − eΦ)/T ]). Infinitely far from the

plate the potential vanishes and n0 =
∫
A exp[−( 1

2mv
2/T )] = ni. Using Poisson equation, show that

the potential decays as Φ(x) = Φ0 exp(−|x|/λD), where λD = ε0T/ne
2. Do the analysis ’sufficiently’ far

from the plate so that you can assume |eΦ/T | << 1.

2. Plasma oscillations.
Take a neutral plasma and perturb it by moving a small slab of electrons by δx, i.e., consider the situation
in 1D only. Then, at the faces of the slab a surface charge ±σ will appear: σ = enδx. Use the Gauss law to
find the restoring force, apply it to the electron equation of motion and show that the electrons will start
oscillating with the plasma frequency ωp =

√
e2n/ε0

3. The plasma parameter Λ and weakly/strongly coupled plasmas
In the first lecture we gave the plasma parameter as the number of particles in the Debye sphere, Λ = 4π

3 nλ
3.

Your job is now to show that it can also be written as Λ = 1√
4π

( rdrc )3/2, where rd = n−1/3 is the inter-particle
distance and rc is the ’distance of closest approach’ under Coulomb interaction, discussed in the first lecture:
1
2mv

2 = q1q2
4πε0rc

. Thus our requirement for a collection of charged particles to be called a plasma, Λ >> 1
not only means that there are a lot of particles in a Debye sphere, but also that rd >> rc. i.e., that the
average distance between particles is much greater than the distance at which particle energy equals the
Coulomb energy. In this regime, loosely speaking, the particles have some ’freedom’ between interactions and
the plasma is called weakly interacting, while at the other extreme the dynamics is entirely dominated by
Coulomb interaction and the plasma is called weakly interacting. As mentioned in the lecture, generally only
weakly interacting plasmas are considered plasmas.

4. Maxwellian distribution in many ways...
(a) Find the normalization coefficient A for a 1-dimensional Maxwellian distribution, f(v) = A1e

−mv2/2T .
(b) Using the result from (a), find the normalization coefficients for a 2-dimensional Maxwellian f(v) =

A2e
−mv2/2T , v = vxx̂ + vy ŷ, and a 3-dimensional Maxwellian f(v) = A3e

−mv2/2T , v = vxx̂ + vy ŷ + vz ẑ
distribution.
(c) Use spherical coordinates and recalculate the normalization coefficient for the 3-dimensional Maxwellian
distribution.

5. (More on Maxwellian distribution ...)
(a) Derive the speed distribution g(v), and
(b) obtain the most probable speed,
(c) obtain the average speed.
(d) Using the speed distribution g(v), derive the energy distribution h(E). (Make sure the normalization is
right)



(e) Calculate the average energy for a Maxwellian distribution. You can choose which presentation of the
Maxwellian you use.

6. (Some warm-ups for velocity moments plus a slightly more challenging one).
(a) Calculate the first 3 velocity moments of the distribution function when the velocity space dependence is
given by the Maxwellian normalized to particle number.
(b) Derive the continuity equation

∂ns
∂t

+∇ · (nsVs) =
dns
dt

+ ns∇ · Vs = 0

starting from the Vlasov equation
∂fs
∂t

+ ṙ · ∇fs + v̇ · ∇vfs = 0.

Recipe: integrate Vlasov equation over the velocity (=take the zeroth velocity moment). (c) Derive the
momentum equation

msns
dVs

dt
+∇ · ps − qsns (E + Vs ×B) = 0

starting from the Vlasov equation

∂fs
∂t

+ ṙ · ∇fs + v̇ · ∇vfs = Cs (f) .

Hints: Multiply the Vlasov equation by msv and integrate over velocity, i.e. take the first velocity moment.
For the first term you can interchange the derivation and integration. For the second term use equation

∇ · (fA) = f∇ ·A + A · ∇f

to simplify the term v · ∇f . For the force term you need to work a little bit more. Start as you did for the
second term, then show that for the Lorenz force

∇v · a = ∇v ·
( q
m

(E + v ×B)
)

= 0.

The rest is vector algebra. NRL’s will be provided. :)

7. (Plasma as a dielectric medium – do it yourself!)
Revisit the high-frequency electrostatic perturbation for another useful result: Linearize the electron equation
of motion and continuity equation, and use them together with the linearized Gauss’ law to show that the
latter can be expressed in terms of the plasma dielectric coefficient εp as ∇ · (εpE) = 0, where εp = 1− ω2

p

ω2 .

8. (Magnetic mirror in a tokamak).
In a tokamak the plasma column has been bent into a torus and the field lines twist around it helically. The
magnetic field strength thus increases towards the symmetry axis, a particle moving along the field line sees
a non-uniform field and, when moving to higher field strength, can get reflected if its parallel velocity is not
sufficiently high. I.e., the particle encounters a magnetic mirror.
(a) Assuming that the field strength has the simple 1/R dependence, where R (called the major radius)
measures the distance from the symmetry axis, find the expression for Rb, the distance at which a particle
bounces, i.e., gets reflected.
(b) Show that the condition for a particle to get reflected is given by µB0

E > 1 − a/R0, where µ is magnetic
moment, B0 is the magnetic field strength at the center of the plasma column (called magnetic axis), E is
particle energy, a is the minor radius of the plasma (i.e., distance from the magnetic axis to the edge of the
plasma column), and R0 is the major radius of the magnetic axis.
(Hints: Use the conservation of energy and magnetic moment. You can also assume large aspect ratio, i.e.,
R/a >> 1)


