

CS-E4160 - Laboratory Works in Networking and Security, 9.01.2019-29.03.2019

Course Arrangements

Slides originally made by Essi Jukkala, Aalto University

Course Personnel

Responsible teacher

• Antti Ylä-Jääski

Assistants

- Felipe A. R. Yaguache
- Dancun Omondi Ogenda
- Markus Holmström

Aalto University School of Science

https://mycourses.aalto.fi/course/view.php?id=16934

For general discussion about assignments

- <u>Slack</u>
- MyCourses General Discussion forum
 Personal matters to course personnel mailing list
- cs-e4160@aalto.fi

Please do not contact course staff directly!

Course Contents and Motivation

Get to try all the things you have learned! Hands on learning of the basics of:

- Configuring, monitoring and diagnosing different services and computer networks
- Configuring and inspecting some computer and network security related stuff
- Linux administration and networking tools
- Course material will provide you with the base information
- Learn to search for information and instructions yourself!

Prerequisites

Aalto University School of Science

Recommended prerequisites:

• A course on computer networks or similar

Useful skills

- Basics of Unix-based systems administration (we will be using Ubuntu in the course)
- Command line

We will have a brief lecture on Linux/Unix basics to help you get started

• During the course you should be able to do things in Unix-based machines

Assignments

Aalto University School of Science

- Path A
- Network tools
- Email server
- IPv6
- Encrypted filesystems
- Firewall
- Extra: OpenFlow (May Change)

Path B

- Network tools
- Web server
- DNS
- Network filesystems
- VPN
- Extra: OpenFlow

Course Environment

You will install your own Virtual Machines (VMs)

- VirtualBox as the Hypervisor
- Three virtual Ubuntu servers
- Virtual networks
- Installation instructions in MyCourses
- You will have to bring your own laptop to the sessions

Schedule

Aalto University School of Science	Week	Event	Path A	Path B
	2	This Lecture		
	3	Linux Crash Course		
	4	Round 1 demos	Networking tools	Networking tools
	6	Round 2 demos	Email server	Web server
	9	Round 3 demos	lpv6	DNS
	11	Round 4 demos	Encrypted Filesystems	Network Filesystems
	13	Round 5 demos	Firewall	VPN
	14	Extra Round demos	OpenFlow(May Change)	OpenFlow

Before demo weeks there are reception weeks where you can get help.

Passing the course

You can get 5 or 10 ECTS from this course

- Path A or Path B: 5 ECTS, intro(n/w tools) + 4 mandatory assignments (+ 1 extra)
- Path A+B: 10 ECTS, intro (n/w tools) + 8 mandatory assignments (+ 1 extra)
- You have to demonstrate each assignment to an assistant to be graded
- Points for each task shown in the assignment
- First assignments is shared between paths

Extra assignments

- Can be used to replace missed mandatory assignment
- Can be used to increase your total score

Detailed grading information is available in MyCourses

Aalto University School of Science

Reception sessions

During reception week you can ask questions about your assignments

- Assistants will answer your questions the best they can
- But they will not do the assignments for you

Reception sessions

- Not mandatory!
- No reservation, first-come-first-serve
- Exact times and dates will be in MyCourses
 - Tuesdays (14:00 onwards unless otherwise specified)

Demo sessions

Aalto University Reserve your personal slot in MyCourses

- 30 minutes per assignment
 - You can reserve 30min + 30min, if doing both paths

Demonstrate your solution for the assignment face-to-face

- Assistants will ask questions, you answer to your best knowledge
- Your responsibility is to prepare your answers to questions so that your can demonstrate the whole assignment in reserved times

Demos are MANDATORY SESSIONS

• Will be held in room C111 for the first the first three rounds and in B322 after that.

Aalto University School of Science

Can I bring paper notes? Or can I use electronic notes?

- Yes, but you should leave all material you brought to course personnel **Can I work with a pair?**
- Yes, but you will have to demo with your own virtual machines without your pair!

Can I reuse the work of some other student?

- Zero tolerance; plagiarism will lead to failing of the whole course
- The course personnel asks you additional questions to see you understand what you were doing and why

Can I use my own work from previous years? Do I have to demo those?

• Contact the course personnel!

Assignments

First assignment: Network tools

Aalto University School of Science

Common for both paths!

- Setup your VMs, learn to find information
 Basic Unix-tools for networking
- ip, netstat, dig, ping, traceroute
 Configuring network interfaces
 Client-server communication with netcat
 and telnet

Path A

A2: Email server

Setup an email server

• Configure postfix

Aalto University School of Science

• Learn to filter spam with procmail and spamassassin

• Learn to filter non-spam with procmail

A4: Encrypted filesystems

Simulation of encryption of an external memory (such as an USB memory stick)

- Two different schemes:
- Encrypted loopback device with dm_crypt
- Encryption layer for an existing filesystem with encFS Truecrypt also used to create a hidden volume inside another encrypted volume.

A3: IPv6

Build a small network with IPv6 Routing in IPv6 Connect to global IPv6 using Teredo

A5: Firewall

Firewall basics Packet filtering with netfilter/iptables Squid as web proxy to control traffic

Path B

B2: Web server

Configuring Apache A basic Node.js application Encryption using SSL / HTTPS Using nginx as a reverse proxy

B4: Network filesystems

Setup and compare network filesystems

- NFS
- Samba
- sshfs
- WebDAV

B3: DNS

Create caching-only name server Create a DNS domain Configure subdomains Secure the server with DNSSEC

B5: VPN

Introduction to VPN concepts OpenVPN used to establish a host-to-net VPN scenario

Aalto University School of Science

Extra A and B: OpenFlow

Openflow basics

- Build custom topologies with mininet
- Control switches using POX
- Create a layer-2 firewall with Pyretic

Requires basic knowledge of Python

Extra for path A may change!

Questions?

