
Interdisciplinary Aalto

YYT-C3002
Application Programming in Engineering
Spring 2019

Application programming in

engineering;

Delivering quality

17.1.2019

Reading material for the basic lectures:

• Book: Ian Sommerville, Software Engineering, 10th

edition, chapter 4 & 24.

• Slides of the book: http://iansommerville.com/software-

engineering-book/slides/

YYT-C3002
Application Programming in Engineering
Spring 2019

Content
• Software quality

• Functional and non-functional requirements

• Requirements engineering processes

• Software testing and review

YYT-C3002
Application Programming in Engineering
Spring 2019

Quality is the degree of excellence of something.

We measure the excellence of software via a set

of attributes.

!= satisfying requirements – it is part of the software engineering

process to get the “right” requirements

!= customer satisfaction – restaurant might be popular but is it quality?

YYT-C3002
Application Programming in Engineering
Spring 2019

Software quality
• IEEE

1. The degree to which a system, component, or process meets

specified requirements.

2. The degree to which a system, component, or process meets

customer or user needs or expectations.

• Pressman

– Conformance to explicitly stated functional and performance

requirements, explicitly documented development standards,

and implicit characteristics that are expected of all professionally

developed software

YYT-C3002
Application Programming in Engineering
Spring 2019

Why is software different?
• The actual product, code, is practically invisible to the

user

• Limited opportunities to detect bugs or defects

• Often software is extraordinary highly complex piece of

engineering

• Changes often lead to new demanding functionality

• Requirements are hard to specify

– Tension between customer quality requirements and developer

quality requirements

– Software specifications are often incomplete and inconsistent

YYT-C3002
Application Programming in Engineering
Spring 2019

Software quality assurance
• IEEE

1. A planned and systematic pattern of all actions necessary to

provide adequate confidence that an item or product conforms

to established technical requirements.

2. A set of activities designed to evaluate the process by which

the products are developed or manufactured.

• Galin
– A systematic, planned set of actions necessary to provide adequate

confidence that the software development process or the maintenance

process of a software system product conforms to established

functional technical requirements as well as with the managerial

requirements of keeping the schedule and operating within the

budgetary confines.

YYT-C3002
Application Programming in Engineering
Spring 2019

What is a requirement?

YYT-C3002
Application Programming in Engineering
Spring 2019

• It may range from a high-level abstract
statement of a service or of a system constraint
to a detailed mathematical functional
specification.

• This is inevitable as requirements may serve a
dual function
– May be the basis for a bid for a contract - therefore

must be open to interpretation;

– May be the basis for the contract itself - therefore
must be defined in detail;

– Both these statements may be called requirements.

YYT-C3002
Application Programming in Engineering
Spring 2019

Type of requirement

• User requirements

– Statements in natural language plus diagrams of the services the

system provides and its operational constraints. Written for

customers.

• System requirements

– A structured document setting out detailed descriptions of the

system’s functions, services and operational constraints. Defines

what should be implemented so may be part of a contract

between client and contractor.

YYT-C3002
Application Programming in Engineering
Spring 2019

YYT-C3002
Application Programming in Engineering
Spring 2019

Type of requirement (another classification)

• Functional requirements
– Statements of services the system should provide, how the

system should react to particular inputs and how the system
should behave in particular situations.

– May state what the system should not do.

• Non-functional requirements
– Constraints on the services or functions offered by the system

such as timing constraints, constraints on the development
process, standards, etc.

– Often apply to the system as a whole rather than individual
features or services.

• Domain requirements
– Constraints on the system from the domain of operation

YYT-C3002
Application Programming in Engineering
Spring 2019

Requirements imprecision

• Problems arise when functional requirements are not precisely

stated.

• Ambiguous requirements may be interpreted in different ways by

developers and users.
– What is used as input, what is the end result, what does each term used mean,

inconsistent usage of terms…

• In principle, requirements should be both complete and consistent.

– They should include descriptions of all facilities required.

– There should be no conflicts or contradictions in the descriptions

of the system facilities.

• In practice, because of system and environmental complexity, it is

impossible to produce a complete and consistent requirements

document.

YYT-C3002
Application Programming in Engineering
Spring 2019

Non-functional requirements

• These define system properties and constraints e.g.
reliability, response time and storage requirements.
Constraints are usable device resources, system
representations, etc.

• Process requirements may also be specified mandating
a particular IDE, programming language or
development method.

• Non-functional requirements may be more critical than
functional requirements. If these are not met, the
system may be useless.

Types of non-functional requirements

YYT-C3002
Application Programming in Engineering
Spring 2019

Non-functional requirements implementation

• Non-functional requirements may affect the overall architecture of a

system rather than the individual components.

– For example, to ensure that performance requirements are met, you

may have to organize the system to minimize communications between

components.

• A single non-functional requirement, such as a security requirement,

may generate a number of related functional requirements that

define system services that are required.

– It may also generate requirements that restrict existing requirements.

YYT-C3002
Application Programming in Engineering
Spring 2019

YYT-C3002
Application Programming in Engineering
Spring 2019

Non-functional classifications

• Product requirements

– Requirements which specify that the delivered product must

behave in a particular way e.g. execution speed, reliability, etc.

• Organisational requirements

– Requirements which are a consequence of organisational

policies and procedures e.g. process standards used,

implementation requirements, etc.

• External requirements

– Requirements which arise from factors which are external to the

system and its development process e.g. interoperability

requirements, legislative requirements, etc.

What is a requirements

engineering process?

YYT-C3002
Application Programming in Engineering
Spring 2019

• The processes used for RE vary widely
depending on the application domain, the people
involved and the organisation developing the
requirements.

• However, there are a number of generic
activities common to all processes

– Requirements elicitation;

– Requirements analysis;

– Requirements validation;

– Requirements management.

• In practice, RE is an iterative activity in which
these processes are interleaved.

YYT-C3002
Application Programming in Engineering
Spring 2019

YYT-C3002
Application Programming in Engineering
Spring 2019

Requirements elicitation
• Software engineers work with a range of system stakeholders to find

out about the application domain, the services that the system

should provide, the required system performance, hardware

constraints, other systems, etc.

• Usually user stories and scenaries are the end result

• Challenges

– Stakeholders don’t know what they really want.

– Stakeholders express requirements in their own terms.

– Different stakeholders may have conflicting requirements.

– Organisational and political factors may influence the system

requirements.

– The requirements change during the analysis process. New

stakeholders may emerge and the business environment may change.

YYT-C3002
Application Programming in Engineering
Spring 2019

User stories and scenarios

• Scenarios and user stories are real-life examples of how

a system can be used.

• Stories and scenarios are a description of how a system

may be used for a particular task.

• Because they are based on a practical situation,

stakeholders can relate to them and can comment on

their situation with respect to the story.

YYT-C3002
Application Programming in Engineering
Spring 2019

Requirements specification

• The process of writing down the user and system

requirements in a requirements document.

• User requirements have to be understandable by end-

users and customers who do not have a technical

background.

• System requirements are more detailed requirements

and may include more technical information.

• The requirements may be part of a contract for the

system development

– It is therefore important that these are as complete as possible.

YYT-C3002
Application Programming in Engineering
Spring 2019

Requirements validation

• Concerned with demonstrating that the

requirements define the system that the

customer really wants.

• Requirements error costs are high so validation

is very important

– Fixing a requirements error after delivery may cost up

to 100 times the cost of fixing an implementation

error.

YYT-C3002
Application Programming in Engineering
Spring 2019

Requirements checking

• Validity. Does the system provide the functions which

best support the customer’s needs?

• Consistency. Are there any requirements conflicts?

• Completeness. Are all functions required by the

customer included?

• Realism. Can the requirements be implemented given

available budget and technology

• Verifiability. Can the requirements be checked?

YYT-C3002
Application Programming in Engineering
Spring 2019

Requirements validation techniques

• Requirements reviews
– Systematic manual analysis of the requirements.

• Prototyping
– Using an executable model of the system to check

requirements.

• Test-case generation
– Developing tests for requirements to check testability.

YYT-C3002
Application Programming in Engineering
Spring 2019

Changing requirements

• The business and technical environment of the system always

changes after installation.

– New hardware may be introduced, it may be necessary to interface the

system with other systems, business priorities may change (with

consequent changes in the system support required), and new

legislation and regulations may be introduced that the system must

necessarily abide by.

• The people who pay for a system and the users of that system are

rarely the same people.

– System customers impose requirements because of organizational and

budgetary constraints. These may conflict with end-user requirements

and, after delivery, new features may have to be added for user support

if the system is to meet its goals.

YYT-C3002
Application Programming in Engineering
Spring 2019

Changing requirements

• Large systems usually have a diverse user

community, with many users having different

requirements and priorities that may be

conflicting or contradictory.

– The final system requirements are inevitably a

compromise between them and, with experience, it is

often discovered that the balance of support given to

different users has to be changed.

YYT-C3002
Application Programming in Engineering
Spring 2019

Requirements management

• Requirements management is the process of managing changing

requirements during the requirements engineering process and

system development.

• New requirements emerge as a system is being developed and after

it has gone into use.

• You need to keep track of individual requirements and maintain links

between dependent requirements so that you can assess the impact

of requirements changes. You need to establish a formal process for

making change proposals and linking these to system requirements.

YYT-C3002
Application Programming in Engineering
Spring 2019

Verification and validation

YYT-C3002
Application Programming in Engineering
Spring 2019

Verification vs. validation

• Verification:

"Are we building the product right”.

– The software should conform to its specification.

• Validation:

"Are we building the right product”.

– The software should do what the user really requires.

YYT-C3002
Application Programming in Engineering
Spring 2016

V & V confidence

• Aim of V & V is to establish confidence that the system is
‘fit for purpose’.

• Depends on system’s purpose, user expectations and
marketing environment

– Software purpose
• The level of confidence depends on how critical the software is to

an organisation.

– User expectations
• Users may have low expectations of certain kinds of software.

– Marketing environment
• Getting a product to market early may be more important than

finding defects in the program.

YYT-C3002
Application Programming in Engineering
Spring 2016

Program testing

• Testing is intended to show that a program does what it is intended

to do and to discover program defects before it is put into use.

• When you test software, you execute a program using artificial data.

• You check the results of the test run for errors, anomalies or

information about the program’s non-functional attributes.

• Testing is part of a more general verification and validation process,

which also includes static validation techniques, inspections and

reviews

• Can reveal the presence of errors NOT their

absence.

YYT-C3002
Application Programming in Engineering
Spring 2016

Program testing goals

• The ultimate (secret) goal of testing is to get the software fail

– There are, however, different ways to do it

• To demonstrate to the developer and the customer that the software

meets its requirements.

– This means that there should be at least one test for every requirement

in the requirements document.

• To discover situations in which the behavior of the software is

incorrect, undesirable or does not conform to its specification.

– Defect testing is concerned with rooting out undesirable system

behavior such as system crashes, unwanted interactions with other

systems, incorrect computations and data corruption

YYT-C3002
Application Programming in Engineering
Spring 2016

Validation and defect testing

• The first goal leads to validation testing

– You expect the system to perform correctly using a

given set of test cases that reflect the system’s

expected use.

• The second goal leads to defect testing

– The test cases are designed to expose defects. The

test cases in defect testing can be deliberately

obscure and need not reflect how the system is

normally used.

YYT-C3002
Application Programming in Engineering
Spring 2016

Testing process goals

• Validation testing

– To demonstrate to the developer and the system customer that

the software meets its requirements

– A successful test shows that the system operates as intended.

• Defect testing

– To discover faults or defects in the software where its behavior is

incorrect or not in conformance with its specification

– A successful test is a test that makes the system perform

incorrectly and so exposes a defect in the system.

YYT-C3002
Application Programming in Engineering
Spring 2016

YYT-C3002
Application Programming in Engineering
Spring 2016

Inspections and testing

• Software inspections and reviews

– Concerned with analysis of the static system representation to

discover problems (static verification)

– May be supplement by tool-based document and code analysis.

• Software testing

– Concerned with exercising and

observing product behaviour (dynamic verification)

– The system is executed with test data and its operational

behaviour is observed.

YYT-C3002
Application Programming in Engineering
Spring 2016

Inspections and testing

YYT-C3002
Application Programming in Engineering
Spring 2016

Software inspections

• These involve people examining the source

representation with the aim of discovering anomalies and

defects.

• Inspections not require execution of a system so may be

used before implementation.

• They may be applied to any representation of the system

(requirements, design,configuration data, test data, etc.).

• They have been shown to be an effective technique for

discovering program errors.

YYT-C3002
Application Programming in Engineering
Spring 2016

Advantages of inspections

• During testing, errors can mask (hide) other errors.

Because inspection is a static process, you don’t have to

be concerned with interactions between errors.

• Incomplete versions of a system can be inspected

without additional costs. If a program is incomplete, then

you need to develop specialized test harnesses to test

the parts that are available.

• As well as searching for program defects, an inspection

can also consider broader quality attributes of a

program, such as compliance with standards, portability

and maintainability.

YYT-C3002
Application Programming in Engineering
Spring 2016

Inspections and testing

• Inspections and testing are complementary and not opposing

verification techniques.

• Both should be used during the V & V process.

• Inspections can check conformance with a specification but not

conformance with the customer’s real requirements.

• Inspections cannot check non-functional characteristics such as

performance, usability, etc.

Stages of testing

• Development testing

• Release testing

• User testing

YYT-C3002
Application Programming in Engineering
Spring 2016

What is development

testing?

YYT-C3002
Application Programming in Engineering
Spring 2016

YYT-C3002
Application Programming in Engineering
Spring 2016

Development testing

• Development testing includes all testing activities that

are carried out by the team developing the system.

– Unit testing, where individual program units or object classes are

tested. Unit testing should focus on testing the functionality of

objects or methods.

– Component testing, where several individual units are integrated

to create composite components. Component testing should

focus on testing component interfaces.

– System testing, where some or all of the components in a

system are integrated and the system is tested as a whole.

System testing should focus on testing component interactions.

YYT-C3002
Application Programming in Engineering
Spring 2016

Unit testing

• Unit testing is the process of testing individual

components in isolation.

• It is a defect testing process.

• Units may be:

– Individual functions or methods within an object

– Object classes with several attributes and methods

– Composite components with defined interfaces used

to access their functionality.

Automated testing

• Whenever possible, unit testing should be automated so

that tests are run and checked without manual

intervention.

• In automated unit testing, you make use of a test

automation framework (such as JUnit) to write and run

your program tests.

• Unit testing frameworks provide generic test classes that

you extend to create specific test cases. They can then

run all of the tests that you have implemented and

report, often through some GUI, on the success of

otherwise of the tests.

YYT-C3002
Application Programming in Engineering
Spring 2016

Choosing unit test cases

• The test cases should show that, when used as

expected, the component that you are testing does what

it is supposed to do.

• If there are defects in the component, these should be

revealed by test cases.

• This leads to 2 types of unit test case:

– The first of these should reflect normal operation of a program

and should show that the component works as expected.

– The other kind of test case should be based on testing

experience of where common problems arise. It should use

abnormal inputs to check that these are properly processed and

do not crash the component.

YYT-C3002
Application Programming in Engineering
Spring 2016

General testing guidelines

• Choose inputs that force the system to generate all error

messages

• Design inputs that cause input buffers to overflow

• Repeat the same input or series of inputs numerous

times

• Force invalid outputs to be generated

• Force computation results to be too large or too small.

YYT-C3002
Application Programming in Engineering
Spring 2016

Component testing

• Software components are often composite components

that are made up of several interacting objects.

– For example, in the weather station system, the reconfiguration

component includes objects that deal with each aspect of the

reconfiguration.

• You access the functionality of these objects through the

defined component interface.

• Testing composite components should therefore focus

on showing that the component interface behaves

according to its specification.

– You can assume that unit tests on the individual objects within

the component have been completed.

YYT-C3002
Application Programming in Engineering
Spring 2016

Interface testing

• Objectives are to detect faults due to interface errors or

invalid assumptions about interfaces.

• Interface types

– Parameter interfaces Data passed from one method or

procedure to another.

– Shared memory interfaces Block of memory is shared between

procedures or functions.

– Procedural interfaces Sub-system encapsulates a set of

procedures to be called by other sub-systems.

– Message passing interfaces Sub-systems request services from

other sub-systems

YYT-C3002
Application Programming in Engineering
Spring 2016

Interface errors

• Interface misuse

– A calling component calls another component and makes an

error in its use of its interface e.g. parameters in the wrong order.

• Interface misunderstanding

– A calling component embeds assumptions about the behaviour

of the called component which are incorrect.

• Timing errors

– The called and the calling component operate at different speeds

and out-of-date information is accessed.

YYT-C3002
Application Programming in Engineering
Spring 2016

System testing

• System testing during development involves integrating

components to create a version of the system and then

testing the integrated system.

• The focus in system testing is testing the interactions

between components.

• System testing checks that components are compatible,

interact correctly and transfer the right data at the right

time across their interfaces.

• System testing tests the emergent behavior of a system.

YYT-C3002
Application Programming in Engineering
Spring 2016

Use-case testing

• The use-cases developed to identify system interactions

can be used as a basis for system testing.

• Each use case usually involves several system

components so testing the use case forces these

interactions to occur.

• The sequence diagrams associated with the use case

documents the components and interactions that are

being tested.

YYT-C3002
Application Programming in Engineering
Spring 2016

Testing policies

• Exhaustive system testing is impossible so testing

policies which define the required system test coverage

may be developed.

• Examples of testing policies:

– All system functions that are accessed through menus should be

tested.

– Combinations of functions (e.g. text formatting) that are

accessed through the same menu must be tested.

– Where user input is provided, all functions must be tested with

both correct and incorrect input.

YYT-C3002
Application Programming in Engineering
Spring 2016

What is test-driven

development?

YYT-C3002
Application Programming in Engineering
Spring 2016

Test-driven development

• Test-driven development (TDD) is an approach to program

development in which you inter-leave testing and code

development.

• Tests are written before code and ‘passing’ the tests is the critical

driver of development.

• You develop code incrementally, along with a test for that increment.

You don’t move on to the next increment until the code that you have

developed passes its test.

• TDD was introduced as part of agile methods such as Extreme

Programming. However, it can also be used in plan-driven

development processes.

YYT-C3002
Application Programming in Engineering
Spring 2016

Test-driven development

YYT-C3002
Application Programming in Engineering
Spring 2016

Benefits of test-driven development

• Code coverage

– Every code segment that you write has at least one associated test so

all code written has at least one test.

• Regression testing

– A regression test suite is developed incrementally as a program is

developed.

• Simplified debugging

– When a test fails, it should be obvious where the problem lies. The

newly written code needs to be checked and modified.

• System documentation

– The tests themselves are a form of documentation that describe what

the code should be doing.

YYT-C3002
Application Programming in Engineering
Spring 2016

Regression testing

• Regression testing is testing the system to check that

changes have not ‘broken’ previously working code.

• In a manual testing process, regression testing is

expensive but, with automated testing, it is simple and

straightforward. All tests are rerun every time a change is

made to the program.

• Tests must run ‘successfully’ before the change is

committed.

YYT-C3002
Application Programming in Engineering
Spring 2016

What is release
testing?

YYT-C3002
Application Programming in Engineering
Spring 2016

Release testing

• Release testing is the process of testing a particular

release of a system that is intended for use outside of

the development team.

• The primary goal of the release testing process is to

convince the supplier of the system that it is good

enough for use.

– Release testing, therefore, has to show that the system delivers

its specified functionality, performance and dependability, and

that it does not fail during normal use.

• Release testing is usually a black-box testing process

where tests are only derived from the system

specification.

YYT-C3002
Application Programming in Engineering
Spring 2016

What is the difference
between release testing

and system testing?

YYT-C3002
Application Programming in Engineering
Spring 2016

Release testing and system testing

• Release testing is a form of system testing.

• Important differences:

– A separate team that has not been involved in the

system development, should be responsible for

release testing.

– System testing by the development team should

focus on discovering bugs in the system (defect

testing). The objective of release testing is to check

that the system meets its requirements and is good

enough for external use (validation testing).

YYT-C3002
Application Programming in Engineering
Spring 2016

Performance testing

• Part of release testing may involve testing the emergent

properties of a system, such as performance and

reliability.

• Tests should reflect the profile of use of the system.

• Performance tests usually involve planning a series of

tests where the load is steadily increased until the

system performance becomes unacceptable.

• Stress testing is a form of performance testing where the

system is deliberately overloaded to test its failure

behavior.

YYT-C3002
Application Programming in Engineering
Spring 2016

What is user testing?

YYT-C3002
Application Programming in Engineering
Spring 2016

User testing

• User or customer testing is a stage in the testing process

in which users or customers provide input and advice on

system testing.

• User testing is essential, even when comprehensive

system and release testing have been carried out.

– The reason for this is that influences from the user’s working

environment have a major effect on the reliability, performance,

usability and robustness of a system. These cannot be replicated

in a testing environment.

YYT-C3002
Application Programming in Engineering
Spring 2016

Types of user testing

• Alpha testing

– Users of the software work with the development team to test the

software at the developer’s site.

• Beta testing

– A release of the software is made available to users to allow

them to experiment and to raise problems that they discover with

the system developers.

• Acceptance testing

– Customers test a system to decide whether or not it is ready to

be accepted from the system developers and deployed in the

customer environment. Primarily for custom systems.

YYT-C3002
Application Programming in Engineering
Spring 2016

Agile methods and acceptance testing

• In agile methods, the user/customer is part of the

development team and is responsible for making

decisions on the acceptability of the system.

• Tests are defined by the user/customer and are

integrated with other tests in that they are run

automatically when changes are made.

• There is no separate acceptance testing process.

• Main problem here is whether or not the embedded user

is ‘typical’ and can represent the interests of all system

stakeholders.

YYT-C3002
Application Programming in Engineering
Spring 2016

Reading material for the exam

• These lecture slides (for all three lectures)

• Ian Sommerville’s slides for chapters 1-4 & 8

http://iansommerville.com/software-engineering-book/slides/

• Articles:

https://medium.com/@samerbuna/software-engineering-is-different-

from-programming-b108c135af26

http://faculty.salisbury.edu/~xswang/Research/Papers/SERelated/no

-silver-bullet.pdf

http://www.effectiveengineer.com/blog/hidden-costs-that-engineers-

ignore

YYT-C3002
Application Programming in Engineering
Spring 2016

http://iansommerville.com/software-engineering-book/slides/
https://medium.com/@samerbuna/software-engineering-is-different-from-programming-b108c135af26
http://faculty.salisbury.edu/~xswang/Research/Papers/SERelated/no-silver-bullet.pdf
http://www.effectiveengineer.com/blog/hidden-costs-that-engineers-ignore

