

Introduction to combustion

EEN-E2002 Combustion Technology 2019

D.Sc (Tech) Ossi Kaario

Motivation

- Why learn about combustion ?
- Most of the energy in the world, 80% 90%, is produced from different kinds of combustion processes
- Understanding of what is combustion
 - → how to make it more efficient or how to reduce emissions
- This lecture is about fundamental flames and combustion chemistry

Contents

- Bunsen flame
- Fundamental flame types
- Reaction mechanism and Lambda
- Combustion kinetics
- Ignition
- Adiabatic flame temperature

Bunsen burner

Butane global chemistry

$C_4H_{10} + 6.5(O_2 + 3.77N_2) \rightarrow 4CO_2 + 5H_2O + 24.5N_2$

Premixed Bunsen flame

APPremixed methane – air mixture Aalto University School of Engineering

EEN-E2003 Combustion -course, spring 2018

Kilpinen, 1997

A¹¹ Premixed methane – air mixture combustion

School of Engineering

Elementary reactions

Methane chemistry

 Detailed methane (CH₄) chemistry involves 53 species and 325 reactions (GRI 3.0 mechanism)

		Forward Rate Coefficient*				
No.	Reaction	A	ь	E		
Reacti	ons Added in Update from Version 2.11 to	Version 3.0 (co	ontinued)			
287	$OH + HO_2 \rightarrow O_2 + H_2O$	5.00E + 15	0.0	17,330		
288	$OH + CH_3 \rightarrow H_2 + CH_2O$	8.00E + 09	0.5	-1,755		
289	$CH + H_2 + M \rightarrow CH_3 + M$		pressure dependent			
290	$CH_2 + O_2 \rightarrow H + H + CO_2$	5.80E + 12	0.0	1,500		
291	$CH_2 + O_2 \rightarrow O + CH_2O$	2.40E + 12	0.0	1,500		
292	$CH_2 + CH_2 \rightarrow H + H + C_2H_2$	2.00E + 14	0.0	10,989		
293 ^b	$CH_2(S) + H_2O \rightarrow H_2 + CH_2O$	6.82E+10	0.2	-935		
294	$C_2H_3 + O_2 \rightarrow O + CH_2CHO$	3.03E + 11	0.3	11		
295	$C_2H_3 + O_2 \rightarrow HO_2 + C_2H_2$	1.34E + 06	1.6	-384		
296	O + CH ₃ CHO → OH + CH ₂ CHO	2.92E + 12	0.0	1,808		
297	$O + CH_3CHO \rightarrow OH + CH_3 + CO$	2.92E + 12	0.0	1,808		
298	$O_2 + CH_3CHO \rightarrow HO_2 + CH_3 + CO$	3.01E + 13	0.0	39,150		
299	$H + CH_1CHO \rightarrow CH_1CHO + H_2$	2.05E + 09	1.2	2,405		
300	$H + CH_3CHO \rightarrow CH_3 + H_2 + CO$	2.05E + 09	1.2	2,405		
301	$OH + CH_{3}CHO \rightarrow CH_{3} + H_{3}O + CO$	2.34E + 10	0.7	-1.113		
302	$HO_1 + CH_1CHO \rightarrow CH_1 + H_2O_2 + CO$	3.01E + 12	0.0	11.923		
303	$CH_1 + CH_1CHO \rightarrow CH_1 + CH_4 + CO$	2.72E + 06	1.8	5,920		
304	$H + CH_2CO + M \rightarrow CH_2CHO + M$		pressure dependent	100.460.000		
305	$O + CH_{2}CHO \rightarrow H + CH_{2} + CO_{2}$	1.50E + 14	0.0	0.0		
306	$0, + CH, CHO \rightarrow OH + CO + CH, O$	1.81E + 10	0.0	0.0		
307	O, + CH,CHO → OH + HCO + HCO	2.35E+10	0.0	0.0		
308	$H + CH_{2}CHO \rightarrow CH_{2} + HCO$	2.20E + 13	0.0	0.0		
309	$H + CH_{2}CHO \rightarrow CH_{2}CO + H_{2}$	1.10E + 13	0.0	0.0		
310	OH + CH.CHO → H.O + CH.CO	1.20E + 13	0.0	0.0		
311	OH + CH,CHO → HCO + CH,OH	3.01E+13	0.0	0.0		
312	$CH_{4} + C_{4}H_{4} + M \rightarrow C_{4}H_{4} + M$					
313	$O + C_1H_1 \rightarrow OH + C_2H_2$	1.93E+05	2.7	3,716		
314	$H + C_1H_1 \rightarrow C_1H_2 + H_2$	1.32E+06	2.5	6,756		
315	$OH + C_1H_0 \rightarrow C_2H_1 + H_2O$	3.16E + 07	1.8	934		
316	$C_{1}H_{2} + H_{2}O_{2} \rightarrow HO_{2} + C_{2}H_{2}$	3.78E + 02	2.7	1.500		
317	$CH_1 + C_1H_2 \rightarrow C_2H_2 + CH_2$	9.03E - 01	3.6	7.154		
318	$CH_{2} + C_{2}H_{4} + M \rightarrow C_{2}H_{2} + M$					
319	$O + C_{1}H_{1} \rightarrow C_{2}H_{1} + CH_{2}O$	9.64E + 13	0.0	0.0		
320	$H + C_3H_3 + M \rightarrow C_3H_4 + M$					
321	$H + C_{1}H_{2} \rightarrow CH_{2} + C_{2}H_{2}$	4.06E + 06	2.2	890		
322	$OH + C_1H_2 \rightarrow C_2H_2 + CH_2OH$	2.41E+13	0.0	0.0		
323	$HO_3 + C_3H_3 \rightarrow O_3 + C_3H_6$	2.55E + 10	0.3	-943		
324	$HO_2 + C_2H_2 \rightarrow OH + C_2H_2 + CH_2O$	2.41E + 13	0.0	0.0		
	CH + CH + CH + CH	103E ± 13	-0.3	0.0		

^oThe forward rate coefficient $k = AT^b \exp(-E/RT)$. R is the universal gas constant, T is the temperature in K. The units of A involve gmol/cm³ and s, and those of E, cal/gmol. ^bCH₂(S) designates the singlet state of CH₂.

Fundamental gas flames

Premixed flame

Figure 3.1: Structure of a lean methane/air flame (equivalence ratio Φ =0.6), including definition of different layers: inert preheating layer δ_T , reaction layer δ_r consisting of an inner layer with thickness δ and oxidation layer with thickness ϵ ; dotted line indicates heat release profile.

F. Williams 1971

M. Hupa 2000

Flame front marked with hydroperoxyl (HO₂) radical

Aalto University School of Engineering

Laminar flame speed

M. Ghaderi Masouleh et al., Fuel 2016

Diffusion ---- premixed combustion

Fundamental gas flames

Aalto University School of Engineering

Non-premixed flame

M. Hupa 2000

Relative temperatures in a candle flame from thermocouple measurements: I - Body of candle, II - Wick, III - Dark zone, IV - C_2 and Cl zone, V - Luminous zone, VI - Main reaction zone

Diffusion flame

Aalto University School of Engineering

Non-premixed flame

Diffusion flame chemistry

 $C(s) + O_2 \rightarrow CO_2$

A^T Properties of premixed and diffusion Combustion processes

Premixed

Diffusion

- -No soot
- -Poor radiator
- -Chemical reactions determine reaction rate -flame speed can be determined

-Sooting flame -Good raditive heat transfer -Mixing determine reaction rate

-Cannot define burning velocity

-applications (stove, furnace..)-safety issues

Discuss in pairs

Discuss with the person next to you for about 5 minutes the following topics

- 1. Think about the Bunsen burner, how does it operate?
- 2. What does a premixed flame mean ? Where are fuel and air before combustion ? Where is the flame ? Is there is flame speed ? If yes, into what direction ?
- 3. What does a non-premixed flame mean ? Where are fuel and air before combustion ? Where is the flame ? Is there is flame speed ?

Reaction scheme

Complete combustion

$$C_{x}H_{y} + \left(x + \frac{y}{4}\right)O_{2} + 3.77\left(x + \frac{y}{4}\right)N_{2} \rightarrow xCO_{2} + \frac{y}{2}H_{2}O + 3.77\left(x + \frac{y}{4}\right)N_{2}$$

In air
$$\frac{v_{N_2}}{v_{O_2}} = \frac{0.7905}{0.2095}$$

Additional material

Does it burn ?

Complete combustion with oxygen

$$C_x H_y O_z + \left(x + \frac{y}{4} - \frac{z}{2}\right) O_2 \rightarrow x C O_2 + \frac{y}{2} H_2 O_2$$

- Compound is incombustible if $\left(x + \frac{y}{4} \frac{z}{2}\right) \le 0$ $\Rightarrow z \ge 2x + \frac{1}{2}y$
- For example
 - **CO**₂ $z = 2, x = 1, y = 0, \rightarrow 2 \ge 2$, true, does not burn
 - **CO** $z = 1, x = 1, y = 0, \rightarrow 1 \ge 2$, false, burns

School of Engineering

Lambda

Lambda or Air factor

$$\lambda = \frac{n_{i}}{n_{i,st}} \qquad \left\{ \begin{array}{l} n_{i} = n_{O_{2}} + n_{N_{2}} \\ n_{i,st} = n_{O_{2},st} + n_{N_{2},st} \end{array} \right.$$

• Because
$$\left\{ \begin{array}{l} n_{O_{2}} = x_{O_{2}}n_{i} \\ n_{O_{2,st}} = x_{O_{2}}n_{i,st} \end{array} \right.$$
, where $x_{O_{2}}$ is oxygen

mole fraction, Lambda can also be expressed as

$$\lambda = \frac{n_{O_2}}{n_{O_2,st}}$$

Lambda can also be defined as

$$\lambda = \frac{L}{L_{st}}$$

where L is the available air / fuel ratio and L_{st} is the stoichiometric air / fuel ratio

Lambda

$$C_{x}H_{y} + \lambda \left(x + \frac{y}{4}\right)O_{2} + \lambda \cdot 3.77\left(x + \frac{y}{4}\right)N_{2} \rightarrow$$

$$xCO_{2} + \frac{y}{2}H_{2}O + (\lambda - 1)\left(x + \frac{y}{4}\right)O_{2} + \lambda \cdot 3.77\left(x + \frac{y}{4}\right)N_{2}$$

Write down reaction scheme for C2H2 (acetylene) with

- Lambda=1
- Lambda=2

Example: If Lambda is not known

- If you know your fuel and air amount, what is your Lambda ?
- **1.** Define the stoichiometric air consumption

-For very many hydrocarbons, it is close to L_{st} ~15 (-For methane it is a bit higher 17.1)

- **2.** What is your available air / fuel ratio L ? -30g of air and 1g of fuel $\rightarrow L = 30/1 = 30$
- **3. Lambda is now** $\lambda = \frac{30}{15} = 2$ (assuming $L_{st} = 15$)

Combustion Kinetics

Aalto University School of Engineering

Global reaction:

 $CO + 1/2 \, O_2 \to CO_2$

Elementary reactions

 $\begin{array}{c} CO + O_2 \rightarrow CO_2 + O \\ CO + O + M \rightarrow CO_2 + M^* \\ O + O + M \rightarrow O_2 + M^* \end{array}$

M^{*} = has higher energy than **M**

Rate law (Law of mass action)

 $aA+bB \rightarrow dD+eE... \qquad \frac{d[A]}{dt} = -k[A]^a[B]^b$

a, b, ... are *reaction orders* respect to species A, B ...

• Elementary reaction rate

$$\frac{d[CO]}{dt} = -k[CO][O_2]$$

Can be used only with elementary reactions

M = "third body" – molecule brings (through collision) the energy needed to split the molecule, or takes away energy and stabilizes the combination of e.g. CO + O

Combustion Kinetics

Arrhenius' relation for <u>rate coefficient</u> k

$$k = A \cdot e^{-E_a/RT}$$

A = frequency factor (frequency of collision between molecules)

 E_a = activation energy

- Low activation energy $\mathbf{E} \rightarrow \mathbf{low}$ temperature sensitivity
- High activation energy $\mathbf{E} \rightarrow$ high temperature sensitivity

Energy diagram

Example: NO_x emissions Thermal NO

Or Zeldovich-NO (1946)

$$O + N_{2} \xrightarrow{k_{1}} NO + N \qquad k_{1} = 1.8 \cdot 10^{14} \exp\left(-318 kj \, mol^{-1} / (RT)\right)$$
$$N + O_{2} \xrightarrow{k_{2}} NO + O \qquad k_{2} = 9 \cdot 10^{9} \exp\left(-27 kj \, mol^{-1} / (RT)\right)$$
$$N + OH \xrightarrow{k_{3}} NO + H \qquad k_{3} = 2.8 \cdot 10^{13}$$

Combustion, 1999, Warnatz, Maas, and Dibble

First reaction has high activation energy and hence it has relevant reaction rates only at high temperatures. It is also the rate limiting step of the mechanism (slowest reaction).

Example: Thermal NO

Temperature dependence of the rate coefficient k_1 in the Zeldovich mechanism.

Chemical bonds (in order to understand radicals)

- Chemical bonds are e.g. covalent, ionic, or metallic bond.
- In covalent bonds, atoms share electrones
- In chemical reactions, atoms try to reach noble gas electrone structure = octet structure (8 electrones)
- Hydrogen atom has 1 electrone, each atom shares 1 electrone
 H: H
- Oxygen atom has 6 electrones in the outer electrone shell.
 Octet is reached when both share 2 electrones
 - \ddot{O} :: \ddot{O}
- Nitrogen has 5 electrones in the outer shell. Octet is reached when both share 3 electrones
 - $N \cdots N$
- Covalent bond is relatively strong. Therefore, in order to break 2-atom gas molecules, such as hydrogen, oxygen, and nitrogen, high energy is required.

Radicals

1. A radical has an unpaired electrone

- 2. Structure is incomplete. Therefore, almost always when they <u>collide they react</u>.
- **3.** Consequently, they are very reactive

Examples of radicals:

-O, H, OH, HO₂, CH₃, CH₂, CH, C, NH₂, NH, N, CN

'Whole combustion chemistry is due to radicals'

Ignition (and radicals)

- In applications where the combustion process is intermittent or periodic, like in internal combustion engines, ignition process becomes an important topic.
- With CH fuels ignition takes place only after a certain ignition delay time.
- During the ignition delay period, radical pool population is increasing but the fuel consumption rate and temperature increase are low
- Finally, the radical pool becomes large enough to consume a significant fraction of fuel, and rapid ignition takes place.

Ignition in a spray flame

A. Wehrfritz 2016

Ignition delay times in a spray flame

A. Wehrfritz et al. 2016

H. Kahila et al. 2017

Ignition and Radicals

(0) chain initiation: $CO + O_2 = CO_2 + O$ $H_2 + M^* = H + H + M$ $CH_4 + M^* = CH_3 + H + M$ (1) chain carrying: $O + O_2 + M = O_3 + M^*$ $H + O_2 + M = HO_2 + M^*$ (2) chain branching: $O_3 + CO + M^* = CO_2 + O + O + M$ $H + O_2 = OH + O$ (3) Chain terminating: $O + O + M = O_2 + M^*$

 $O + O + M = O_2 + M$ $H + OH + M = H_2O + M^*$

School of Engineering

Fig. 14-5 Hydrocarbon oxidation process.

Fig. 14-7 Curve of temperature and concentration over time during hydrocarbon combustion.

Experiment

Simulation

Temperature

Ignition

Fig. 16.6. Time behavior of the temperature in a two-stage ignition of a stoichiometric n-heptane-air mixture, p = 15 bar, $T_0 = 625$ K, adiabatic conditions (Esser 1990)

NTC –behavior (Negative Temperature Coefficient)

Two-stage ignition

(Warnatz, Maas, Dibble, 1999)

Additional material

Aalto University School of Engineering Ignition

Figure 1 Reaction regimes (fuel: $n-C_7H_{16}$, initial temperature, T₀: 759 K, initial pressure, p₀: 2 MPa, equivalence ratio, ϕ : 0.5)

Figure 4 Absolute values of heat release or removal rates by major elementary reactions plotted against process temperature, T_P (fuel: n-C₇H₁₆, T₀: 759 K, p₀: 2 MPa, ϕ : 0.5)

Ando and Sakai, SAE 2009-01-0948

LTO = Low temperature oxidation

Another view: Different set of species responsible for low temperature and high temperature oxidation

- Adiabatic flame temperature is the theoretical maximum temperature that can exist in a combustion system
- It is important to know what can be the maximum temperature
- This information can be useful when e.g. designing a new combustion device or e.g. when assessing the validity of simulation results

Energy balance of a combustion system

$$\phi_{P} + \phi_{L} = \dot{n}_{F} h_{F} (T_{F}) + \sum_{i} \dot{n}_{Ai} h_{Ai} (T_{A}) - \sum_{j} \dot{n}_{Bj} h_{Bj} (T_{B})$$
(1)

where e.g. h_F is the chemical enthalpy according to $h_F = \Delta H_{fF}^{\circ}(T_0) + c_{Fm}(T_F - T_0)$

Additional material Energy balance of a combustion system

• Definition of fuel heating value ($T_F = T_A = T_0$ and $\phi_L = 0$)

 $\phi_P = \dot{n}_F q$ q = fuel heating value

• We get from (1)

Aalto University School of Engineering

$$q = h_F(T_0) + \sum_{i} \frac{n_{Ai}}{n_F} h_{Ai}(T_0) - \sum_{j} \frac{n_{Bj}}{n_F} h_{Bj}(T_0)$$
(2)

• The right side of eq. (1) can be arranged in equivalent form

$$\dot{n}_{F}h_{F}(T_{F}) + \sum_{i}\dot{n}_{Ai}h_{Ai}(T_{A}) - \sum_{j}\dot{n}_{Bj}h_{Bj}(T_{B}) = \dot{n}_{F}\left[h_{F}(T_{0}) + \sum_{i}\frac{n_{Ai}}{n_{F}}h_{Ai}(T_{0}) - \sum_{j}\frac{n_{Bj}}{n_{F}}h_{Bj}(T_{0})\right] + n_{F}\left[\sum_{i}\frac{n_{Ai}}{n_{F}}(h_{Ai}(T_{A}) - h_{Ai}(T_{0})) - \sum_{j}\frac{n_{Bj}}{n_{F}}(h_{Bj}(T_{B}) - h_{Bj}(T_{0}))\right]$$

• Putting this into (1) and taking into account (2) yields

Additional material Energy balance of a combustion system

· Definition of fuel heating value ($T_F = T_A = T_0$ and $\phi_L = 0$)

Aalto University School of Engineering

Manipulate the equation to get temperature differences, e.g. h_F(T_F) - h_F(T₀)
We subtrack values and compensate this by adding
the same value

$$\dot{n}_{F}h_{F}(T_{F}) + \sum_{i}\dot{n}_{Ai}h_{Ai}(T_{A}) - \sum_{j}\dot{n}_{Bj}h_{Bj}(T_{B}) = \dot{n}_{F}\left[h_{F}(T_{0}) + \sum_{i}\frac{n_{Ai}}{n_{K}}h_{Ai}(T_{0}) - \sum_{j}\frac{n_{Bj}}{n_{K}}h_{Bj}(T_{0})\right] + n_{F}\left[\sum_{i}\frac{n_{Ai}}{n_{F}}(h_{Ai}(T_{A}) - h_{Ai}(T_{0})) - \sum_{j}\frac{n_{Bj}}{n_{F}}(h_{Bj}(T_{B}) - h_{Bj}(T_{0}))\right]$$

• Putting this into (1) and taking into account (2) yields

Additional material Energy balance of a combustion system

$$= \phi_P + \phi_L + \dot{n}_F \left[\sum_j \frac{n_{Bj}}{n_F} \left(h_{Bj} \left(T_B \right) - h_{Bj} \left(T_0 \right) \right) \right]$$

Exhaust gas losses

• Energy balance for liquids and solid fuels

$$\dot{m}_{F} q + \dot{m}_{F} \left[h_{F} \left(T_{F} \right) - h_{F} \left(T_{0} \right) \right] + \dot{m}_{F} \left[\sum_{i} \frac{n_{Ai}}{m_{F}} \left(h_{Ai} \left(T_{A} \right) - h_{Ai} \left(T_{0} \right) \right) \right]$$
$$= \phi_{P} + \phi_{L} + \dot{m}_{F} \left[\sum_{j} \frac{n_{Bj}}{m_{F}} \left(h_{Bj} \left(T_{B} \right) - h_{Bj} \left(T_{0} \right) \right) \right]$$

• Energy balance for liquids and solid fuels

$$\dot{m}_{F} q + \dot{m}_{F} \left[h_{F} \left(T_{F} \right) - h_{F} \left(T_{0} \right) \right] + \dot{m}_{F} \left[\sum_{i} \frac{n_{Ai}}{m_{F}} \left(h_{Ai} \left(T_{A} \right) - h_{Ai} \left(T_{0} \right) \right) \right]$$

$$= \bigvee_{F} + \bigvee_{L} + \dot{m}_{F} \left[\sum_{j} \frac{n_{Bj}}{m_{F}} \left(h_{Bj} \left(T_{B} \right) - h_{Bj} \left(T_{0} \right) \right) \right]$$

$$= 0 = 0$$

$$All the fuel energy goes into the flue$$

gases (savukaasut)

• We obtain the equation for the adiabatic flame temperature

$$q + [h_F(T_F) - h_F(T_0)] + \sum_i \frac{n_{Ai}}{m_F} (h_{Ai}(T_A) - h_{Ai}(T_0))$$
$$= \sum_j \frac{n_{Bj}}{m_F} (h_{Bj}(T_{ad}) + h_{Bj}(T_0))$$

• If **fuel** and **air** are at the reference temperature T_0

$$q = \sum_{j} \frac{n_{Bj}}{m_F} \left(h_{Bj} \left(T_{ad} \right) + h_{Bj} \left(T_0 \right) \right)$$

• Adiabatic flame temperature is the theoretical maximum temperature that can exist in a combustion system

Exercise

Calculate the adiabatic flame temperature for $C_7 H_{16}$. Assume complete combustion to CO2 and H2O, and Lambda=1. The heating value of the fuel is 41.5 MJ/kg. Air and fuel are assumed to be at the reference temperature 273K before combustion. Hint: start with T_{ad} =2200K.

The procedure:

- 1. Write down the reaction scheme
- 2. Find out the coefficients $\frac{n_{Bj}}{m_F}$

3. Use the equation
$$q = \sum_{j} \frac{n_{Bj}}{m_F} (h_{Bj}(T_{ad}) - h_{Bj}(T_0))$$

4. Select first one temperature and select the according enthalpy values from the table. Then iterate to get the correct fuel heating value

Enthalpy table

Table enthalpies:

<u>Taulukko 14.</u> Eräiden kaasujen taulukkoentalpiat ($h_i - h_{io}$), kJ/mol. T_o = 273.15K. Lähde l25I.

т. к	N ₂	0,	CO,	Ar	SO2	H ₂ O	lima	T. ℃
100	- 5,046	- 5,046	- 5.547	- 3.603	- 6.238	- 5,779	- 5.038	- 173,15
200	- 2.131	- 2.132	- 2.503	- 1.522	- 2.754	- 2.443	- 2.128	- 73.15
300	0.783	0.790	0.981	0.559	1.060	0.903	0.783	26.85
400	3,701	3,767	4.924	2.640	5.238	4.294	3,710	126.85
500	6.664	6.827	9,233	4.720	9,747	7,765	6.675	226.85
600	9.625	9,988	13.838	6.801	14.537	11.345	9.690	326.85
700	12.673	13,246	18,687	8,882	19.545	15.033	12,778	426.85
800	15.784	16.587	23,744	10.963	24,719	18.843	15.934	526.85
900	18,962	19.995	28.973	13.044	30.028	22,779	19,156	626.85
1000	22,202	23.457	34,341	15.125	35.438	26.836	22.439	726.85
1100	25.502	26.970	39.834	17,205	40.927	31.027	25,780	826.85
1200	28,855	30.520	45.428	19,286	46.478	35,339	29.171	926.85
1300	32,251	34,109	51,105	21.367	52.089	39,769	32,603	1026.85
1400	35.688	37.726	56.858	23.448	57,741	44.316	36.075	1126.85
1500	39.159	41.373	62.669	25 529	63.431	48.967	39,580	1226.85
1600	42,659	45.044	68.539	27.610	69.154	53,719	43.114	1326.85
1700	46 189	48737	74 455	29,690	74 907	58 563	46.675	1426.85
1800	49743	57 459	80.408	31 775	80.680	63.491	50 263	1526.85
1900	53,315	56 206	86 400	33.856	86.479	68.499	53.869	1626.85
2000	56 907	59 975	97 474	35 933	92 294	73 577	57 497	1726.85
2100	60516	63764	98 479	38014	98 131	78 723	61 143	1826.85
2200	64.142	67 582	104 558	40.095	103 984	83.931	64.808	1926.85
2300	67,780	67.417	110.658	42.175	109,850	89,194	68.487	2026.85
2400	71 427	75 277	116 779	44 256	115,732	94 507	72 177	2126.85
2500	75.090	79163	122 921	46 337	121.627	99.870	75 887	2226.85
2600	78762	83.065	129 084	48418	127 531	105 280	79607	2326.85
2700	87.447	86 992	135 260	50.499	133451	110727	83 339	2426.85
2800	86 131	90 940	141 452	52 580	139379	116211	87.082	2526.85
2900	89873	94 909	147657	54 661	145 320	121 734	90.833	2626.85
3000	93 579	98 899	153.878	56 741	151 270	127.285	94 598	2726.85
3100	97 238	102 906	160112	58.877	157 232	132 871	98 370	2826.85
3700	100.956	106 934	166 355	60,903	163 202	138 485	102 153	2926.85
3300	104682	110.978	172614	62.984	169 181	144 125	105 947	3026.85
3400	108 409	115044	178 882	65 065	175 168	149794	109 745	3126.85
3500	112143	119172	185 158	67 146	181 163	155 484	113 552	3726.85
3600	115.886	123216	191 446	69.776	187 167	161 194	117 370	3326.85
3700	119629	127 328	197 743	71 307	193 184	166 976	121 191	3476.85
3800	123 381	131452	204 049	73 388	199 204	172679	125 021	3526.85
3900	127132	135 588	210 367	75 469	205 233	178 457	128.855	3626.85
4000	130,892	139.742	216.693	77.550	211.271	184,243	132,698	3726.85

School of Engineering

Engine process with very high adiabatic flame temperature

http://elearning.cerfacs.fr/combustion/illustrations/whatisaflame/index.php