
Program design and UML
CS-C2120, Programming studio 2

16.1.2019

• Chapter 15 opened on Wed 16th
• A+ course page includes now links to

– Koodisäilö
– Telegram forum (informal discussion forum)

• No lecture on Jan. 23rd/25th

News

Lauri Malmi

16.1.2019

• OO analysis and design can be
described as
– Identifying the objects of a system.
– Identifying their relationships.
– Making a design, which can be converted to

executables using OO languages

OO Design

Lauri Malmi

16.1.2019

• During OO analysis, the most important
purpose is to identify objects and
describe them in a proper way.

• The objects should be identified with
responsibilities, that is, the functions
performed by the object.
– Every object has some type of

responsibilities to be performed.

OO analysis: Identifying objects

Lauri Malmi

16.1.2019

• Here emphasis is placed on the
requirements and their fulfilment

• Objects should collaborate according to
their intended association.

• After the association is complete, the
design is also complete.

OO Design – identifying relations

Lauri Malmi

16.1.2019

• Provide a method to support and
document OO analysis and design

• Worth trying out

CRC cards / Responsibility-
Driven Design

16.1.2019

Lauri Malmi

Class title

Responsibilities Collaborators

What the class should do? What other classes are
involved?

CRC card

16.1.2019

Lauri Malmi

DungeonGame

Responsibilities Collaborators

Create the world Level
Create the player Me
Advance the game
Game end

CRC card

16.1.2019

Lauri Malmi

Level

Responsibilities Collaborators

Create caves, corridors and Location
stairs for level Grid
Knows the maze structure
Create initial Monsters in maze Monster
Maintain monster status in the level
Create initial Items in maze Item

CRC card

16.1.2019

Lauri Malmi

Location

Responsibilities Collaborators

Knows the type of location Monster
Knows what the location includes Item
Knows its coordinates in Grid Coordinates
Knows properties (lighting, map status)

CRC card

16.1.2019

Lauri Malmi

Player

Responsibilities Collaborators

Knows current location Level
Location
CompassDir

Knows carried Items Item
Knows Items in use
Knows own properties (life points, symbol…)
Can move and attack Monster
Can develop
Can die

CRC card

16.1.2019

Lauri Malmi

Monster

Responsibilities Collaborators

Knows current location Level
Location
CompassDir

Knows own properties (life points, symbol, …) MonsterType
Knows own MonsterType
Can define whereTo move
Can move and attack Me
Can develop
Can die

CRC card

16.1.2019

Lauri Malmi

Weapon

Responsibilities Collaborators

Knows WeaponType WeaponType
Knows own properties (spell, curse, symbol, …)

CRC card

16.1.2019

Lauri Malmi

Ring

Responsibilities Collaborators

Knows RingType RingType
Knows own properties (spell, curse, symbol, …)

CRC card

16.1.2019

Lauri Malmi

• CRC cards could be tested with the help
of User stories, which are very brief
informal descriptions of relevant actions
in the application.

Testing design

Lauri Malmi

16.1.2019

• I want to proceed through this level
• I want to proceed stairs down to the next

level
• I want to pick up this item
• I want to attack this monster
• I want to use this thing
• Monster wants to find you
• Monster wants to attack you

User stories, examples

16.1.2019

Lauri Malmi

• Design is implemented using OO
languages such as Java, Scala, C++,
etc.

• But this is not straightforward
- Many details need to be added
– Choice of data structures and algorithms
– Top-down vs. Bottom up vs. Both
– Iteration and refinement of design is often

needed

Implementation

Lauri Malmi

16.1.2019

• Graphical description method for
software design

• Allows to abstract details away and focus
on key concepts, components, their
relations and processes.

• Supports structural, behavioral and
architectural modeling

UML, Unified modeling language

Lauri Malmi

16.1.2019

• Graphical description method for
software design

• Allows to abstract details away and focus
on key concepts, components, their
relations and processes.

• Supports structural, behavioral and
architectural modeling

UML, Unified modeling language

Lauri Malmi

16.1.2019

We focus on this only

• Presents a class
– Class name
– Instance variables
– Methods
– Possible attribute of

class type

UML Class diagram

Lauri Malmi

16.1.2019

• Association
– Each Weapon is
associated with one
WeaponType

– WeaponType can
be associated with
many Weapons

Relations: Association

Lauri Malmi

16.1.2019

• DungeonGame has many Levels, which
can exist independently

Relations: Aggregation

Lauri Malmi

16.1.2019

• Levels consist of Locations which cease
to exist if Level is destroyed

Relations: Composition

Lauri Malmi

16.1.2019

• Player’s functions depend on what kind
of Items there are in the game.

Relations: Dependency

Lauri Malmi

16.1.2019

• Stairs extend Floor

Relations: Inheritance

Lauri Malmi

16.1.2019

• Floor implements
abstract class
Location

Relations: Implements

Lauri Malmi

16.1.2019

Example: Dungeon

16.1.2019 Lauri Malmi

Example: Creatures

16.1.2019 Lauri Malmi

Example: Items

16.1.2019 Lauri Malmi

• Are all relations of classes visible?
• Are variables and methods in appropriate

classes, especially in the case of
superclass/subclass hierarchies?

• Has visibility of variables and methods
been considered?

• Can user stories be implemented in this
structure?

Critical questions

Lauri Malmi

16.1.2019

• Cohesion
– Does a class implement many different

things or does it focus on presenting and
manipulating one concept/thing?

– Might there be something, which could be
better implemented in another class or a
new dedicated class?

Quality aspects

Lauri Malmi

16.1.2019

• Coupling
– How complex is the interface between two

classes which use methods / variables?
– Does a class need information of the internals

of another class?
– Does its own implementation depend on such

information?
• For example, is it relevant to know the data

structures used in another class?
• => If yes, there is a risk of cumulative needs for

changes

Quality aspects cont.

Lauri Malmi

16.1.2019

• For a brief tutorial of UML, see for example,
https://www.tutorialspoint.com/uml/

Some examples of other type of
UML diagrams

Lauri Malmi

16.1.2019

https://www.tutorialspoint.com/uml/

Deployment diagram example:
Apple iTunes

Lauri Malmi

16.1.2019 Source: https://www.uml-diagrams.org/

Use case diagram example:
Online Shopping checkout

16.1.2019 Lauri Malmi
Source: https://www.uml-diagrams.org/

Sequence
Diagram
Example

Facebook Web
User

Authentication

16.1.2019 Lauri Malmi

• Small design exercise: Mini Route
planner

Another example

Lauri Malmi

16.1.2019

