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• Chapter 15 opened on Wed 16th
• A+ course page includes now links to 

– Koodisäilö
– Telegram forum (informal discussion forum)

• No lecture on Jan. 23rd/25th 

News
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• OO analysis and design can be 
described as 
– Identifying the objects of a system.
– Identifying their relationships.
– Making a design, which can be converted to 

executables using OO languages

OO Design
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• During OO analysis, the most important 
purpose is to identify objects and 
describe them in a proper way. 

• The objects should be identified with 
responsibilities, that is, the functions 
performed by the object. 
– Every object has some type of 

responsibilities to be performed. 

OO analysis: Identifying objects
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• Here emphasis is placed on the 
requirements and their fulfilment

• Objects should collaborate according to 
their intended association. 

• After the association is complete, the 
design is also complete.

OO Design – identifying relations
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• Provide a method to support and 
document OO analysis and design

• Worth trying out

CRC cards / Responsibility-
Driven Design
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Class title

Responsibilities Collaborators

What the class should do? What other classes are
involved?

CRC card
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DungeonGame

Responsibilities Collaborators

Create the world Level
Create the player Me
Advance the game
Game end

CRC card
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Level

Responsibilities Collaborators

Create caves, corridors and Location
stairs for level Grid
Knows the maze structure
Create initial Monsters in maze Monster
Maintain monster status in the level
Create initial Items in maze Item

CRC card
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Location

Responsibilities Collaborators

Knows the type of location Monster
Knows what the location includes Item
Knows its coordinates in Grid Coordinates
Knows properties (lighting, map status)

CRC card
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Player

Responsibilities Collaborators

Knows current location Level
Location
CompassDir

Knows carried Items Item
Knows Items in use
Knows own properties (life points, symbol…)
Can move and attack Monster
Can develop
Can die

CRC card
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Monster

Responsibilities Collaborators

Knows current location Level
Location
CompassDir

Knows own properties (life points, symbol, …) MonsterType
Knows own MonsterType
Can define whereTo move
Can move and attack Me
Can develop
Can die

CRC card
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Weapon

Responsibilities Collaborators

Knows WeaponType WeaponType
Knows own properties (spell, curse, symbol, …)

CRC card
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Ring

Responsibilities Collaborators

Knows RingType RingType
Knows own properties (spell, curse, symbol, …)

CRC card
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• CRC cards could be tested with the help 
of User stories, which are very brief
informal descriptions of relevant actions
in the application.

Testing design
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• I want to proceed through this level
• I want to proceed stairs down to the next

level
• I want to pick up this item
• I want to attack this monster
• I want to use this thing
• Monster wants to find you
• Monster wants to attack you

User stories, examples
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• Design is implemented using OO 
languages such as Java, Scala, C++, 
etc.

• But this is not straightforward
- Many details need to be added
– Choice of data structures and algorithms
– Top-down vs. Bottom up vs. Both
– Iteration and refinement of design is often

needed

Implementation
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• Graphical description method for 
software design

• Allows to abstract details away and focus
on key concepts, components, their
relations and processes.

• Supports structural, behavioral and
architectural modeling

UML, Unified modeling language

Lauri Malmi
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• Graphical description method for 
software design

• Allows to abstract details away and focus
on key concepts, components, their
relations and processes.

• Supports structural, behavioral and
architectural modeling

UML, Unified modeling language
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• Presents a class
– Class name
– Instance variables
– Methods
– Possible attribute of 

class type

UML Class diagram
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• Association
– Each Weapon is
associated with one
WeaponType

– WeaponType can
be associated with
many Weapons

Relations: Association
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• DungeonGame has many Levels, which
can exist independently

Relations: Aggregation
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• Levels consist of Locations which cease
to exist if Level is destroyed

Relations: Composition
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• Player’s functions depend on what kind
of Items there are in the game.

Relations: Dependency
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• Stairs extend Floor

Relations: Inheritance

Lauri Malmi
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• Floor implements
abstract class
Location

Relations: Implements
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Example: Dungeon
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Example: Creatures
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Example: Items
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• Are all relations of classes visible?
• Are variables and methods in appropriate

classes, especially in the case of 
superclass/subclass hierarchies?

• Has visibility of variables and methods
been considered?

• Can user stories be implemented in this
structure?

Critical questions
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• Cohesion
– Does a class implement many different

things or does it focus on presenting and 
manipulating one concept/thing?

– Might there be something, which could be
better implemented in another class or a 
new dedicated class?

Quality aspects
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• Coupling
– How complex is the interface between two

classes which use methods / variables?
– Does a class need information of the internals

of another class?
– Does its own implementation depend on such

information?
• For example, is it relevant to know the data 

structures used in another class?
• => If yes, there is a risk of cumulative needs for 

changes

Quality aspects cont.

Lauri Malmi

16.1.2019



• For a brief tutorial of UML, see for example,  
https://www.tutorialspoint.com/uml/

Some examples of other type of 
UML diagrams
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Deployment diagram example: 
Apple iTunes

Lauri Malmi
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Use case diagram example: 
Online Shopping checkout
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Sequence 
Diagram 
Example

Facebook Web 
User 

Authentication
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• Small design exercise: Mini Route
planner

Another example
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