
Testing
CS-C2120, Programming studio 2

6.2.2019

• Project topic selection was due
yesterday

• Project plan due Monday, Feb 11th
• Chapter 18 opens at the latest on Mon

11th
– Very few assignments

• UML-task results should be ready by Feb
7th

News

6.2.2019

Lauri Malmi 2

• Software can fail in different ways
– There is a logical error in the code and program

crashes
• e.g. null-pointer exception or divide by zero

=> exception handling can help detecting the error but not
removing it.

– There is a logical error and the program
calculates incorrect results

• You have seen a lot of these cases…
=> test results can help you identify the reason for the error

Software failures

Lauri Malmi

6.2.2019

3

• The program handles well normal cases but
fails to process incorrect input data or other
special cases, like missing input files.
– There is no way to avoid these situations, so

you need to take care of them yourself
Þ exception handling can help here

• The program does not implement the
required features.
– E.g., some essential commands are missing or

do not work.
=> You just have to implement the missing parts

Software can fail…

Lauri Malmi

6.2.2019

4

• The program works correctly, but is far too slow
when working with realistic data…

=> Might be solved by changing to use more efficient data
structures / algorithms.

• Other issue
– The program may have serious security problems
– Platform dependencies may cause issues
– Sometimes the program works correctly but in a

surprising way
• undocumented or unexpected feature, e.g., Excel in some

cases interprets data as date values.
=> You just have to implement the fixes

Software failures…

Lauri Malmi

6.2.2019

5

• Bug
• Defect
• Error
• Failure
• Feature

Some terms

Lauri Malmi

6.2.2019

6

• Why should we test our programs?
– ”Program testing can be used to show the

presence of bugs, but never to show their
absence!”

• Edsger Dijkstra (1930-2002)

– What else could we do to show that our
software works?

• Formal proofs of correctness have a very limited
application area

Goal of testing

Lauri Malmi

6.2.2019

7

• Program functionality
– Software meets the given requirements

• Program correctness
– Software gives correct responses to all kinds of

inputs
• Performance testing

– Performs its functionality in acceptable time
• Usability testing

– User interaction with the software is acceptable

What can we test?

Lauri Malmi

6.2.2019

8

• Software works on the desired platforms
– Operating systems
– Devices

• Acceptance testing
– Software meets the general requirements of

the customer

What can we test...

Lauri Malmi

6.2.2019

9

• Alpha testing
– Testing the feasibility of the initial software (or

prototype) among potential customers
• Beta testing

– User acceptance testing for a limited audience
• Functional vs. Non-functional testing

– Functional: what the program should do?
– Non-functional: other aspects like performance,

usability, scalability, …
• Installation testing

– Whether the installation process works correctly

Some more terminology

Lauri Malmi

6.2.2019

10

• Regression testing
– Running a series of tests to discover if anything is broken after

a major change in software
– Typically ready-made regression test sets

• Smoke testing
– Testing whether it is worthwhile to proceed with further testing

• Stress testing
– Testing the limit capacity of operation, to discover when the

performance breaks down.
• Internationalization and localization

– Testing that the software works in different languages and
geographical / cultural areas.

Some more terminology…

Lauri Malmi

6.2.2019

11

• Static testing
– Code reviews, walkthroughs in collaboration

with a peer.
– Identifying dead code

• Dynamic testing
– Executing program with test cases

Different testing processes

Lauri Malmi

6.2.2019

12

• White-box testing/glass box testing
– Seeks to show that internal structures / algorithms

within program / program unit work correctly.
– Usually carried out in unit testing level

• Black-box testing
– Seeks to show that the program / program unit

produces correct output without considering how it
does it (even with not access to it)

• Gray-box testing
– Have access to source code but perform tests as in

black-box testing.

Different testing approaches

Lauri Malmi

6.2.2019

13

• How widely the test cases cover the code.
– Function coverage
– Statement coverage
– Branch coverage
– Condition coverage
– Path coverage

• Fault injection
• Mutation testing

Test quality

Lauri Malmi

6.2.2019

14

• Equivalence partitioning
– Consider the space of possible input values
– Split the space into areas and take test cases

from each area.
– For example:

• coordinates from all quadrants
• The Chess problem: input files having different

ordering and selection of blocks
– Makes more sense in unit testing of a one

method instead of the whole program level

How to design tests?

Lauri Malmi

6.2.2019

15

• Boundary value analysis
– Consider boundary cases of input or parameter values

or data structures. Take test cases around them.
– For example

• Suppose some min / max values are specified for a
parameter. What happens with values min, min-1, max,
max+1.

• Off-by-one bugs:
– Check that array index remains within bounds

• What happens with an empty collection (say List), or
collection with just one item?

• Consider searching/inserting/deleting items in a List. What
happens, if the item is the first or the last one, or does not
exist in the structure?

How to design tests?

Lauri Malmi

6.2.2019

16

• Fuzz testing
– Consider what happens with wrong input

values:
• Illegal values
• Wrong type of data (e.g., reading ”A” for Int)
• Missing / empty data
• Wrong format in data
• Too large data sets
• Missing input files / cannot access file

How to design tests?

Lauri Malmi

6.2.2019

17

• Use case testing
– Consider typical user actions
– What happens in each phase?
– Can the user perform subtasks?
– What information is available for her/him?
– How does she/he give commands?

How to design tests?

Lauri Malmi

6.2.2019

18

• Do NOT build your whole program before
you start testing.

• Which parts of your program will you
implement in each phase?

• How could you test each part (package /
class / method) separately?
– What do you need to be able to do it?

Design your testing process

Lauri Malmi

6.2.2019

19

• You can build a visually complete user
interface, including windows, panes,
buttons and menus even though all logic
behind them is still missing. E.g.
– Buttons and menus call Dummy methods
– Or call Stub methods which return constant

values just to show that the method is called
appropriately

User interface testing

Lauri Malmi

6.2.2019

20

• Create a test class which can, e.g.,
– open file
– read file contents and display them
– manage with end-of-file case
– write contents of a given data set (generated

for the test purpose only) to a file
– close file
– manage with errorneous content or format

File management testing

Lauri Malmi

6.2.2019

21

• Create a test class which calls methods of the tested data
structure class or collection

• Give generated data for the methods to build content in the
structure, e.g. insert generated strings, ints, pairs, … into
the structure to initialize it for testing.

• Build a method to traverse the structure through and print
all values.

• Build real methods that your program needs to manipulate
the structure
– Execute the methods with the test data structure and call the

auxialiary method to print the content and thus allow you to
monitor that the content is correct.

– Test the special cases like empty structure, structure with one
item, possible full structure

Data structure testing

Lauri Malmi

6.2.2019

22

• You can build your own asserts methods also
without Scalatest library.

• Basically assert is a method, which receives as a
parameter a logical expression (exp == something)
to check that it holds.
– exp is a variable in the tested method
– something is its expected value
– If the expression is not true, asserts prints out a

message fo this (or throws an expection) and possibly
quits the program

– The condition could also be some other comparison, like
• assert(number > 0)
• assert(x > 0 && x < 100)

Asserts

Lauri Malmi

6.2.2019

23

class TestSupport {

def assert(expression: Boolean, codeLine : Int) = {
if (!expression) {
println("Assert failed in line: ", codeLine)
System.exit(0)

}
}
}

Lauri Malmi

6.2.2019

24

• Debugger is a highly useful aid in many
cases.

• However, debugging graphical user
interfaces can be painful.

• Why?
– Graphical user interface is based on processing
events (mouse click, button click, key click, …)
which are processed separately

– When you follow program execution, the
program control jumps into event processing,
which may be confusing.

Debugging and user interfaces

Lauri Malmi

6.2.2019

25

• Jumping between uninteresting GUI
methods and the actual logical code in
unexpected ways is disturbing, if you try
to follow progress step-by-step.
– Setting breakpoints only in logical code is a

partial solution.
– But keeping track on which active method

call you are investigating may be
cumbersome.

Debugging and user interfaces…

Lauri Malmi

6.2.2019

26

• One option is to separate the GUI code as well
as possible from the logical code, and test it
separately
– Use stubs or mocks to help you to provide minimal

data for testing and the user interface can deliver
and show data appropriately.

• And, implement a logical part of the program
using command line interaction first (or stubs /
mocks) to provide necessary UI data.
– Test that the logic works properly before you

integrate the parts, followed by integration testing

Debugging and user interfaces…

Lauri Malmi

6.2.2019

27

• While debugger is a great tool to help
you, printing variable values is a useful
method, too, to follow program execution
and checking that variable values are
correct.

• Assert methods fit well together with this.

Printing values

Lauri Malmi

6.2.2019

28

• Define a variable to toggle whether you
are in debug mode or mode

val DEBUG_ON = true

Hint: Toggle debugging mode

Lauri Malmi

6.2.2019

29

class TestSupport {
val DEBUG_ON = true
def assert(expression: Boolean, codeLine : Int) = {
if (!expression) {
println("Assert failed in line: ", codeLine)
System.exit(0)

}
}
}
//-------------------

…
If (TestSupport.DEBUG_ON) println (…)
…
If (TestSupport.DEBUG_ON)

TestSupport.assert(x > 0, 239)

Lauri Malmi

6.2.2019

30

• Waterfall model

Software development processes

Lauri Malmi

6.2.2019

31

• Agile software development
– Development is iterative, incremental,

evolutionary
– Works in short cycles covering planning,

analysis, design, coding, unit testing, and
acceptance testing.

– Works in close collaboration with customers
– Scrum is one agile framework having 2

week sprints (and there are many others)

Software development processes

Lauri Malmi

6.2.2019

32

• TDD (test driven development)
– Turns requirements into tests

1. Add a new test
2. Run all tests and see if the new test fails
3. Write code that addressed the new test
4. Run tests and revise code until all tests pass
5. Refactor code
6. Goto 1

Software development processes

Lauri Malmi

6.2.2019

33

• CS-C3150 Software Engineering
• CS-C3180 Software Design and Modelling
• CS-C2130 Software Project 1
• CS-C2140 Software Project 2

Some future courses

Lauri Malmi

6.2.2019

34

• Lecture given by Otto Seppälä
• Topics:

– Building graphical user interfaces
– Concurrency and threads

• Follow MyCourses / A+ announcements
for project plan demos etc.

Next week

Lauri Malmi

6.2.2019

35

