Clicker lecture 1 of Topic 1:
Transmission line theory and waveguides

Jan 10, 2018

Registration

Go with your mobile phone to presemo.aalto.fi/mwe1

Fill your full name into the text field for registration.

Q0: How did you prepare yourself for this clicker lecture?

Answer honestly! Your answer does not affect "grading".

CHOOSE ONE ORE MORE!

1. I got the book and I read the topic-related chapter in the course book
2. I answered the pre tasks
3. I supplemented my answer after reading other students' answers (or teacher's comments)
4. I started to solve the exercise problems
5. Something else
6. I did not prepaper myself at all

Typical transmission lines

Transmission lines are needed for transferring signals within and between components and devices.

Coaxial cable

Microstrip line on printed circuit board

Rectangular waveguide

Transmission line theory

Components and lines whose physical length is a "considerable" fraction of the wavelength (e.g., $>\lambda / 10$) must be analyzed using the transmission line theory

Q1a: One solution of the wave equations is given. What function does this solution represent in the real time domain?

1. $u(z, t)=U_{0} \mathrm{e}^{\mathrm{j}(\omega t-\beta z)}$
2. $u(z, t)=j U_{0} \cos (\omega t-\beta z)$
3. $u(z, t)=j U_{0} \sin (\omega t-\beta z)$
4. $u(z, t)=U_{0} \cos (\omega t-\beta z)$
5. $u(z, t)=U_{0} \sin (\omega t-\beta z)$
6. I don't know

One solution:

$$
u(z)=U_{0} e^{-\mathrm{j} \beta \cdot z}, \alpha=0
$$

Propagation constant:

$$
\begin{aligned}
\gamma & =\sqrt{(R+\mathrm{j} \omega L)(G+\mathrm{j} \omega C)} \\
& =\alpha+\mathrm{j} \beta
\end{aligned}
$$

Connection between the time harmonic (complex) domain and real time domain:

$$
u(z, t)=\mathfrak{R}\left\{u(z) e^{i \omega t}\right\}
$$

Q1b: One solution of the wave equations is given. What function does this solution represent in the real time domain?

1. $u(z, t)=U_{0} \mathrm{e}^{\mathrm{j}(\omega t-\beta z)}$
2. $u(z, t)=j U_{0} \cos (\omega t-\beta z)$

Connection between the time harmonic (complex) domain and real time domain:

$$
u(z, t)=\mathfrak{R}\left\{u(z) e^{j \omega t}\right\}
$$

One solution:

$$
u(z)=U_{0} e^{-\mathrm{j} \beta \cdot z}, \alpha=0
$$

Propagation constant:

$$
\begin{aligned}
\gamma & =\sqrt{(R+\mathrm{j} \omega L)(G+\mathrm{j} \omega C)} \\
& =\alpha+\mathrm{j} \beta
\end{aligned}
$$

(complex) domaın and real tıme domain:

Q1: One solution of the wave equations is given. What function does this solution represent in the real time domain?

1. $u(z, t)=U_{0} \mathrm{e}^{\mathrm{j}(\omega t-\beta z)}$
2. $u(z, t)=j U_{0} \cos (\omega t-\beta z)$
3. $u(z, t)=j U_{0} \sin (\omega t-\beta z)$
4. $u(z, t)=U_{0} \cos (\omega t-\beta z)$
5. $u(z, t)=U_{0} \sin (\omega t-\beta z)$

Connection between the time harmonic (complex) domain and real time domain:

$$
u(z, t)=\mathfrak{R}\left\{u(z) e^{j \omega t}\right\}
$$

One solution:

$$
u(z)=U_{0} e^{-\mathrm{j} \beta \cdot z}, \alpha=0
$$

Propagation constant:

$$
\begin{aligned}
\gamma & =\sqrt{(R+\mathrm{j} \omega L)(G+\mathrm{j} \omega C)} \\
& =\alpha+\mathrm{j} \beta
\end{aligned}
$$

(complex) domain and real time domain:

Q2a: What is the physical time-domain interpretation of this solution?

1. Decaying wave to positive z direction
2. Propagating wave (lossless) to positive z direction
3. Decaying wave to negative z direction
4. Propagating wave (lossless) to negative z direction
5. Propagating wave (lossless) whose source is in the location $z=0$.
6. I don't know

$$
u(z)=U_{0} e^{-\mathrm{j} \beta \cdot z}, \alpha=0
$$

$$
u(t, z)=U_{0} \cos (\omega t-\beta z)
$$

Q2b: What is the physical time-domain interpretation of this solution?

1. Decaying wave to positive z direction

$$
u(z)=U_{0} e^{-\mathrm{j} \beta \cdot z}, \alpha=0
$$

2. Propagating wave (lossless) to positive z direction
3. Decaying wave to negative z direction $u(t, z)=U_{0} \cos (\omega t-\beta z)$
4. Propagating wave (lossless) to negative z direction
5. Propagating wave (lossless) whose source is in the location $\mathrm{z}=0$.

Q2: What is the physical time-domain interpretation of this solution?

1. Decaying wave to positive z direction
2. Propagating wave (lossless) to positive z direction
3. Decaying wave to negative z direction
4. Propagating wave (lossless) to negative z direction
5. Propagating wave (lossless) whose source is in the location $\mathrm{z}=0$.

Propagating wave in the time domain

$=$ electric field vector / voltage $u(z, t) \quad \bullet=$ electron

+z direction
Animation Source: en.wikipedia.org

1. Look at a constant E field / voltage wave front, how does it behave?
2. Look at constant z location, how E field / voltage behaves in that location?
3. What is roungly estimated length of the shown line in wavelengths?

Propagating wave in time domain

$=$ electric field vector / voltage $u(z, t) \quad \bullet$ = electric charge

+z direction
Animation Source: en.wikipedia.org

$$
u(t, z)=U_{0} \cos (\omega t-\beta z)
$$

U_{0} is the peak voltage!

Q3a: What is the physical interpretation of this solution?

1. Decaying wave to positive z direction
2. Amplifying wave to positive z direction
3. Decaying wave to negative z direction
4. Amplifying wave to negative z direction
5. None of above
6. I don't know

Q3b: What is the physical interpretation of this solution?

1. Decaying wave to positive z direction
2. Amplifying wave to positive z direction
3. Decaying wave to negative z direction
4. Amplifying wave to negative z direction
5. None of above

Q3: What is the physical interpretation of this solution?

1. Decaying wave to positive z direction
2. Amplifying wave to positive z direction
3. Decaying wave to negative z direction
4. Amplifying wave to negative z direction
5. None of above

Transmission line theory

- Propagation constant γ is a complex number:

$$
\gamma=\sqrt{(R+\mathrm{j} \omega L)(G+\mathrm{j} \omega C)}=\alpha+\mathrm{j} \beta
$$

α is the attenuation constant b is the phase constant

- Forward travelling (decaying) wave can be written

Transmission line theory

- Components and lines whose physical length is a considerable portion of the wavelength must be analyzed using the transmission line theory

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{d^{2} u(z)}{d z^{2}}=\gamma^{2} u(z) \quad \text { "telegraph } \\
\frac{d^{2} i(z)}{d z^{2}}=\gamma^{2} i(z) \quad \text { equations" }
\end{array}\right. \\
& \gamma=\sqrt{(R+\mathrm{j} \omega L)(G+\mathrm{j} \omega C)} \\
& \quad=\alpha+\mathrm{j} \beta \quad \text { propagation constant }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Full solutions } & U(z)=U^{+} e^{-\gamma z}+U^{-} e^{\gamma z} \\
\text { of telegraph } & I(z)=I^{+} e^{-\gamma z}+I^{-} e^{\gamma z} \\
\text { equations: } &
\end{array}
$$

Transmission line theory

propagation constant:

Q4a: The characteristic impedance Z_{0} of a lossless line is

The characteristic impedance is defined as the ratio between the voltage and current:

$$
Z_{0}=\frac{U(z)}{I(z)}=\frac{U^{+}}{I^{+}}=\frac{U^{-}}{-I^{-}}=\sqrt{\frac{R+\mathrm{j} \omega L}{G+\mathrm{j} \omega C}}
$$

1. Purely real positive number $(r+j x, r>0, x=0)$
2. Purely real negative number $(r+j x, r<0, x=0)$
3. Purely imaginary number($r+j x, r=0, x \neq 0)$
4. Complex number $(a+j b, a, b \neq 0)$
5. None of above
6. I don't know

Q4b: The characteristic impedance Z_{0} of a lossless line is

The characteristic impedance is defined as the ratio between the voltage and current:

$$
Z_{0}=\frac{U(z)}{I(z)}=\frac{U^{+}}{I^{+}}=\frac{U^{-}}{-I^{-}}=\sqrt{\frac{R+\mathrm{j} \omega L}{G+\mathrm{j} \omega C}}
$$

1. Purely real positive number $(r+j x, r>0, x=0)$
2. Purely real negative number $(r+j x, r<0, x=0)$
3. Purely imaginary number($r+j x, r=0, x \neq 0)$
4. Complex number $(a+j b, a, b \neq 0)$
5. None of above

Q4b: The characteristic impedance Z_{0} of a lossless line is

The characteristic impedance is defined as the ratio between the voltage and current:

$$
Z_{0}=\frac{U(z)}{I(z)}=\frac{U^{+}}{I^{+}}=\frac{U^{-}}{-I^{-}}=\sqrt{\frac{R+\mathrm{j} \omega L}{G+\mathrm{j} \omega C}}
$$

1. Purely real positive number $(r+j x, r>0, x=0)$
2. Purely real negative number $(r+j x, r<0, x=0)$
3. Purely imaginary number($r+j x, r=0, x \neq 0)$
4. Complex number $(r+j x, r, x \neq 0)$
5. None of above

Q5a: What does power P (see formula below) physically mean?

$\longmapsto ~ Z ~$

1. Loss power (rms) in the line due to resistive losses
2. Peak power propagating to positive $+z$ direction
3. Total net power (rms) in the line
4. Power (rms) propagating to positive $+z$ direction
5. Power (rms) delivered to the load impedance $Z_{\mathrm{L}}\left(\neq Z_{0}\right)$
6. I don't know

Q5b: What does power P (see formula below) physically mean?

\longmapsto Z

1. Loss power (rms) in the line due to resistive losses
2. Peak power propagating to positive $+z$ direction
3. Total net power (rms) in the line
4. Power (rms) propagating to positive $+z$ direction
5. Power (rms) delivered to the load impedance $Z_{\mathrm{L}}\left(\neq Z_{0}\right)$

Q5: What does power P (see formula below) physically mean?

$\longmapsto ~ Z ~$

1. Loss power (rms) in the line due to resistive losses
2. Peak power propagating to positive $+z$ direction
3. Total net power (rms) in the line
4. Power (rms) propagating to positive $+z$ direction
5. Power (rms) delivered to the load impedance $Z_{L}\left(\neq Z_{0}\right)$

Teaser for the next week: what happens in the animation?

"Transient to standing wave" by Davidjessop - Own work. Licensed under CC BY-SA 4.0 via Commons https://commons.wikimedia.org/wiki/File:Transient_to_standing_wave.gif\#/media/File:Transient_to_standing_wav e.gif

