Agenda

- Decision problems
- Instance (= input) representations
- Turing machine representations
- The universal Turing machine
- Undecidability
Decision Problems

- Recall our definition of decision problems:
 - Decision problem \(\sim\) language \(L \subseteq \{0, 1\}^*\)

- We model all computational tasks as decision problems:
 - How to handle optimisation problems?
 - How to handle non-binary string inputs, like graphs?
Decision Problems: Example

Travelling Salesman Problem (Decision Version)

- **Instance:** Graph $G = (V, E)$ with positive edge weights, integer $W \geq 0$, a vertex $v \in V$.
- **Question:** Is there a tour starting from vertex v that visits all other vertices exactly once and then returns to v with weight at most W?
Representations

- **For general inputs:**
 - Encode all inputs as binary
 - Just like we actually do with computers

- **More formally:**
 - Define an encoding function that maps instance \(x \) into a binary string \(\langle x \rangle \)
Representations: Numbers

- Numbers are represented in binary
 - \(n \) is the binary representation of \(n \)
 - Leading zeros can be ignored

\[
\begin{align*}
\lceil 1 \rceil & = 1 \\
\lceil 2 \rceil & = 10 \\
\lceil 3 \rceil & = 11 \\
\lceil 10 \rceil & = 1010 \\
\lceil 1203 \rceil & = 10010110011
\end{align*}
\]
Representations: Non-binary strings

- **Encoding strings over non-binary alphabet \(\Gamma \):**
 - Encode each symbol using \(\lceil \log_2 |\Gamma| \rceil \) bits
 - Encode strings by concatenating the binary representations

- **Example:** \(\Gamma = \{a, b, c, d\} \), \(\lceil \log_2 |\Gamma| \rceil = 2 \)

\[
\begin{align*}
\langle a \rangle &= 00 \\
\langle b \rangle &= 01 \\
\langle c \rangle &= 10 \\
\langle d \rangle &= 11 \\
\langle ababcd \rangle &= 000100011011 = 000100011011
\end{align*}
\]
Representations: Pairs and tuples

- **Encoding pairs of objects:**
 - Assume we already have an encoding function \(\cdot \) for objects \(x \) and \(y \) using alphabet \(\Gamma \)
 - Let \(\# \) be a symbol not in \(\Gamma \)
 - **Pairs:** encode \((x, y)\) as \(\langle x \rangle \# \langle y \rangle \)
 - **Tuples:** encode \((x_1, x_2, \ldots, x_k)\) as \(\langle x_1 \rangle \# \langle x_2 \rangle \# \cdots \# \langle x_k \rangle \)
 - Encode the resulting string in binary

- Apply recursively for nested pairs and tuples
Representations: Graphs

- **Convenient to assume:** vertex set is $V = \{1, 2, \ldots, n\}$

- **Two common encoding schemes for graphs:**
 - Adjacency lists
 - Adjacency matrices
Representations: Adjacency Lists

- **Adjacency list representation:**
 - For each \(v \), list the neighbours of \(v \)
 - List all the adjacency lists
 - Encode using the tuple encoding

\[
\begin{align*}
(& 1, (2, 3)), \\
(& 2, (1, 3)), \\
(& 3, (1, 2, 4)), \\
(& 4, (3))
\end{align*}
\]
Representations: Adjacency Matrices

- **Adjacency matrix representation of** $G = (V, E)$:
 - Matrix M_G such that

 $$M_G(v, u) = \begin{cases}
 1 & \text{if } v \neq u \text{ and } v \text{ and } u \text{ are adjacent,} \\
 0 & \text{otherwise.}
 \end{cases}$$

- **Encode the matrix as a string**:
 - Example: $\langle G \rangle = 0110#1010#1101#0010$

\[
\begin{bmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]
Adjacency Lists vs. Adjacency Matrices

Graph $G = (V, E)$ with n vertices and m edges
- Adjacency list encoding: $O(n + m \log n)$ bits
- Adjacency matrix encoding: $O(n^2)$ bits

- Representations can be extended to handle directed graphs and weighted graphs

- Equivalent in terms of polynomial-time algorithms
 - Can convert from one to the others in polynomial time
 - However, can matter in other settings for sparse graphs (meaning $m = o(n^2)$)
Representations in Practice

- **We assume that representations are ‘reasonable’:**
 - Encoding is injective, i.e. one-to-one
 - Conversion between two reasonable representations can be done in polynomial time
 - We can decide in polynomial time if a given string $x \in \{0, 1\}^*$ represents a valid object

- **We assume encoding happens in the background:**
 - We don’t distinguish between the input and its encoding
 - For non-encoding strings, output 0
Decision Problems: Example

Travelling Salesman Problem (Decision Version)

- **Instance:** Graph $G = (V, E)$ with positive edge weights, a vertex $v \in V$, and an integer $W \geq 0$.

- **Question:** Is there a tour starting from vertex v that visits all other vertices exactly once and then returns to v with weight at most W?

- Input is an encoding of a tuple (G, v, W), where G is a weighted graph, v is an integer (i.e. a vertex), and W is an integer.

- If the encoding is not valid, output 0.

- Otherwise, output is 1 or 0 depending on the instance.
Representations: Turing Machines

- Turing machines are finite objects, and we can obviously represent them as binary strings

- Concretely:
 - Map the alphabet and the state space to integers
 - Turing machine is a tuple $M = (\Gamma, Q, \delta)$
 - Γ can be interpreted as a tuple of integers
 - Q can be interpreted as a tuple of integers
 - Each entry in δ can be interpreted as a tuple, and δ itself can be interpreted as a tuple

- Apply encoding for tuples
Representations: Turing Machines

- Convenient to tweak the semantics so that we have certain nice properties

- Each TM is represented by *infinitely many strings*
 - Allow ‘empty symbols’ at the end of the representation

- Each string represents *some Turing machine*
 - Non-valid encodings are mapped to a single TM
 - E.g. a TM that always halts immediately

- **Notation:** $M_\alpha = $ Turing machine represented by string $\alpha \in \{0, 1\}^*$
Turing Machines as Data

Simple, yet important consequences of previous:

- Turing machines (∼ programs) can be treated as data
- One can define computational problems that refer to Turing machines
- The set \mathcal{M} of all Turing machines can be enumerated:
 - $\mathcal{M} = \{M_\alpha | \alpha \in \{0, 1\}^*\}$, or
 - $\mathcal{M} = \{M_1, M_2, \ldots\}$, via the correspondence
 $\alpha \sim$ number represented by binary string 1α
Universal Turing Machine: The Idea

- Since Turing machines can be treated as data, one can have Turing machines simulate other Turing machines provided as input.

- **Actually, there is a universal Turing machine** \mathcal{U}:
 - Input: an encoding α of a Turing machine $M = M_\alpha$ and a string x.
 - \mathcal{U} simulates M on input x and produces output $M(x)$.
 - Moreover, one can make this simulation efficient.

- Hence, a single Turing machine captures *all computation*.

- In modern terms, \mathcal{U} is an *interpreter* for the TM programming language, written in the same language.
Universal Turing Machine: The Theorem

Theorem

There is a Turing machine U such that for every $\alpha, x \in \{0, 1\}^*$,

- if M_α halts on input x, then $U((\alpha, x)) = M_\alpha(x)$, and
- if M_α does not halt on input x, then U does not halt on (α, x).

Moreover, if M_α halts on input x in T steps, then U halts on input (α, x) in CT^2 steps, where C is a constant that only depends on M_α.
Universal Turing Machine: Proof Idea

- Turing machine U has as inputs:
 - string $\alpha \in \{0, 1\}^*$, representing a k-tape TM M_α
 - string $x \in \{0, 1\}^*$, the intended input for M_α

- Basic construction for U:
 - **Simulated input tape**: simulates the input tape of M_α
 - **Machine tape**: stores the representation of M_α
 - **State tape**: stores the current state of M_α
 - **Simulation tape**: simulates all worktapes of M_α
 - Output tape of U simulates the output tape of M_α
Universal Turing Machine: Proof Idea

- **Simulation of the working tapes:**
 - Using the same tricks as last lecture
 - In interleaved positions, store full contents of all working tapes of M_α in binary
 - Use special marking characters to indicate which positions hold the heads of M_α
Universal Turing Machine: Proof Idea

- **Setup:**
 - Copy the representation of M_α and x to the corresponding tapes
 - Set the current state of M_α to starting state

- **Simulation step:**
 - Scan the simulation tape and store the symbols under head to the state tape
 - Scan the representation of M_α to find a transition corresponding to the current configuration of M_α, write down the written symbols and head movements
 - Pass over simulation tape, apply changes
Universal Turing Machine: Proof Idea

- **Time complexity:**
 - Assume M_α runs for T steps on input x
 - Any tape of M_α can have at most T symbols on it
 - Each simulation step takes at most CT steps for some constant C
 - At most T simulation steps
 - Total CT^2, C subsumes constant factors from setup
Universal Turing Machine (Strong Version)

Theorem

There is a TM U such that for every $\alpha, x \in \{0, 1\}^*$,

- if M_α halts on input x, then $U((\alpha, x)) = M_\alpha(x)$, and
- if M_α does not halt on input x, then U does not halt on (α, x).

Moreover, if M_α halts on input x in T steps, then U halts on input (α, x) in $CT \log T$ steps, where C is a constant that only depends on M_α.

Proof: complicated.
Undecidability: A Simple Counting Argument

For any language L, is there a Turing machine that decides, or more weakly accepts L?

- For definiteness, let us consider languages and Turing machines over the binary alphabet $\{0, 1\}$
- Let M_1, M_2, \ldots be the enumeration of all Turing machines described earlier
- Denote $L_i =$ language accepted by machine M_i
- This gives an enumeration of all TM-acceptable (binary) languages L_1, L_2, \ldots
- However we know that the family \mathcal{L} of all (binary) languages cannot be thus enumerated (cf. tutorial problem T1.2)
- Hence there exists a language $L \in \mathcal{L}$ that does not appear in the enumeration L_1, L_2, \ldots
- In summary: there are only countably many Turing machines, but uncountably many languages; thus, there are not enough Turing machines for even accepting every language

What about concrete examples of undecidable languages?
The Diagonal Language

Definition

The *diagonal function* \(f_D : \{0, 1\}^* \rightarrow \{0, 1\} \) is defined as

\[
f_D(\alpha) = \begin{cases}
0 & \text{if } M_\alpha(\alpha) = 1, \text{ and} \\
1 & \text{otherwise.}
\end{cases}
\]

- The corresponding language is the *diagonal language* \(D = \{\alpha | f_D(\alpha) = 1\} = \{\alpha | M_\alpha(\alpha) \neq 1\} \)

- Note that here the condition \(M_\alpha(\alpha) \neq 1 \) includes the possibility that \(M_\alpha \) does not halt on input \(\alpha \), denoted \(M_\alpha(\alpha) \uparrow \).
The diagonal language D is undecidable.

Proof:

- Assume D is decidable
- Then there exists a TM M such that for all $\alpha \in \{0, 1\}^*$, $M(\alpha) = f_D(\alpha)$
- In particular, $M(\bot M \bot) = f_D(\bot M \bot)$
- This is a contradiction: by definition of D,
 - $M(\bot M \bot) = 1$ implies $f_D(\bot M \bot) = 0$,
 - $M(\bot M \bot) = 0$ implies $f_D(\bot M \bot) = 1$
The Halting Problem

Definition

The *halting function* f_{HALT} is defined as

$$f_{\text{HALT}}((\alpha, x)) = \begin{cases} 1 & \text{if } M_\alpha \text{ halts on input } x \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

- The corresponding language is the *halting problem*

 $$\text{HALT} = \{(\alpha, x) \mid M_\alpha \text{ halts on input } x\}$$
The Halting Problem

Theorem

The halting problem is undecidable.

- The proof is by a reduction argument:
 - We show how to effectively transform any instance of the diagonal problem into a “corresponding” instance of the halting problem
 - Then, if we could decide the halting problem, we could also decide the diagonal language, which we know is impossible
 - This shows that in some sense the halting problem is more difficult than the diagonal problem
Proof: Halting Problem Is Undecidable

- Recall that $\alpha \in D$ iff either $M_\alpha(\alpha) \neq 1$ (properly) or $M_\alpha(\alpha) \uparrow$

- Assume there is a Turing machine M_H that decides the halting problem

- Then we can decide the diagonal language as follows:
 - On input $\alpha \in \{0, 1\}^*$, simulate M_H on instance (α, α)
 - If $M_H(\alpha, \alpha) = 0$, i.e. $M_\alpha(\alpha) \uparrow$:
 - Output 1
 - If $M_H(\alpha, \alpha) = 1$, i.e. $M_\alpha(\alpha) \downarrow$:
 - Use the UTM U to compute $M_\alpha(\alpha)$
 - If $M_\alpha(\alpha) = 1$ then output 0, otherwise output 1
Implications of Undecidability

- **Halting problem is relevant in practice**
 - Implication: one cannot check programmatically that programs function correctly
 - Specifically, one cannot check for *infinite loops*

- **More generally: Rice’s theorem**
 - All *semantic properties* of Turing machines, i.e. properties that concern only their input/output characteristics, are undecidable

- **For example:**
 - Does TM M on input x produce output y?
 - Does TM M on some input produce output 0?
 - Does TM M halt on all inputs?
 - Does TM M halt on some input?
Lecture 3: Summary

- Encoding objects as binary strings
- Encoding Turing machines as binary strings
- The universal Turing machine
- Existence of undecidable problems
- Halting problem is undecidable