
CASE STUDY: ANDROID OS
PLATFORM SECURITY

Lecture 2

2

You will be learning:

 Android as a software platform
 Internals and surrounding ecosystem

 Security techniques in Android:
 Application signing

 Application isolation

 Permission-based access control

 Hardware-based security features

3

Mobile Software platform security

Administrator

User

Application
Installer

Reference Monitor

Mobile
Device

System Updater Policy
Database

Platform Security Architecture

Application

Boot
Integrity

Device
Identification

Application
Database

Developer

Centralized
Marketplace

Operator

Auxiliary
Marketplace

Operator

Isolated
Execution

Device
Authentication

Platform
Provider

Application
Loader

Device
Management

Third-party
library

Third-party
service

H
W

 S
ecu

rity A
P

I

Secure
Storage

Boot
Verifier

Secure Storage
Provider

Platform Security
Component

Third-Party Software
Component

Role

Legacy DAC
Execution
Protection

Hardware-Security
Functionality

Legend

Software Isolation

System
service

System
library

IPC

4

Android in a nutshell

 Linux-based (ARM, x86, x86_64, MIPS)

 Widely used for phones and tablets
 Wearables, smart TVs, cameras, (handheld) gaming

consoles, etc.

 Applications written in Java, Kotlin
 May include C++ NDK libraries

 Open-source software stack +
closed source applications and services

5

Security goals

 Protect user data

 Protect system resources

 Provide application isolation

6

On terminology

 Linux = the kernel

 ”Desktop Linux” ≈ GNU / Linux

 Linux DAC = (Unix) file permissions

 Linux MAC = SELinux

 Permissions = Android app perms.
or SELinux

7

Android Software Stack
M

id
d

le
w

ar
e

Linux
Kernel

Hardware
Abstraction
Layer (HAL)

System
Core

System
Server

Application
Framework

Applications

Android
Runtime

Core
Libraries

Native
Daemons

Native
Libraries

Media
Server

Drivers Binder SELinux

Dalvik

ART

System
Services &
Managers

Media
Services

Manager IPC
Proxies

System
Applications

Third-party
Applications

Content
Providers

HAL
Interfaces

Java Core
Library

Power
Management

Android Open Source Project. Security. 2015

https://source.android.com/devices/tech/security/

8

Android Software Stack
R

ef
er

en
ce

 m
o

n
it

o
rs

Linux
Kernel

Hardware
Abstraction
Layer (HAL)

System
Core

System
Server

Application
Framework

Applications

Android
Runtime

Core
Libraries

Native
Daemons

Native
Libraries

Media
Server

Drivers Binder SELinux

Dalvik

ART

System
Services &
Managers

Media
Services

Manager IPC
Proxies

System
Applications

Third-party
Applications

Content
Providers

HAL
Interfaces

Java Core
Library

Power
Management

Android Open Source Project. Security. 2015

https://source.android.com/devices/tech/security/

9

Android Software Stack

Linux
Kernel

Hardware
Abstraction
Layer (HAL)

System
Core

System
Server

Application
Framework

Applications

Android
Runtime

Core
Libraries

Native
Daemons

Native
Libraries

Media
Server

Drivers Binder SELinux

Dalvik

ART

System
Services &
Managers

Media
Services

Manager
IPC Proxies

System
Applications

Third-party
Applications

Content
Providers

HAL
Interfaces

Java Core
Library

Power
Management

Hardware

Trusted OS
Kernel

Trusted OS
Services

Trusted
Applications

Google. Android for Work Security white paper. 2015

Android OS Trusted Execution
Environment

https://static.googleusercontent.com/media/www.google.co.jp/en/US/work/android/files/android-for-work-security-white-paper.pdf

10

Versions & API Levels

Version Code name Release date API level

9 Pie Aug 6, 2018 API level 28

8.1.0 Oreo Dec 5, 2017 API level 27

8.0.0 Oreo Aug 21, 2017 API level 26

7.1 Nougat Oct 4, 2016 API level 25

7.0 Nougat Aug 22, 2016 API level 24

6.0 Marshmallow Oct 5, 2015 API level 23

...

 Confectionary code names for major versions

 API level indicates application framework
version

11

Application components

Activity • Visible UI

Service • Background job

Content
Provider

• Database

Enck, Ongtang, McDaniel. Enck, Ongtang, McDaniel: Understanding Android Security. 2009
Android Open Source Project. Application Security. 2015

Signature

Manifest Intent

Broadcast

Receiver

Application
Third-party

library
Third-party

service

http://dx.doi.org/10.1109/MSP.2009.26
https://source.android.com/devices/tech/security/overview/app-security.html

12

Software distribution

 Apps from multiple sources
 Google Play

 Auxiliary marketplaces

 Sideloading

 Pre-installed software

 Marketplace services
 Discovery

 Purchase & Installation

 User-submitted ratings / flagging

 Malware scans (Google Bouncer)

 Remote application installation & removal

App
Installer

Developer

Market

13

Application signing

 Goal: same-origin policy for apps

Developer signs with
private key

Signature verified
with developer’s public key

MyApp

14

Application signing (cont.)

 For application packages (APKs)
 Self-signed X.509 certificates (no PKI!)

 Package update requires same certificate

 Developer manages APK signing key
(cannot be recovered)

 For app bundles (AABs)
 Upload format for compiled sources and resources

 Defer APK generation and signing to marketplace

 Google manages APK signing key

 Developer signs AABs or APKs with upload key
(can be reset)

Elenkov. Android’s Security Architecture. 2015.
Google Play. Manage your app signing keys. 2018
Android Open Source Project: About Android App Bundles. 2018

https://usmile.at/symposium/program/2015/elenkov
https://support.google.com/googleplay/android-developer/answer/7384423
https://developer.android.com/guide/app-bundle

15

APK Signature Scheme

 JAR signing (v1)

 Individual signature for each integrity protected file

 Does not protect ZIP metadata

 APK Signature Scheme v2 (since 7.0)

 Whole-file signature stored in APK Signing Block

 APK Signature Scheme v3 (since 8.0)

 Adds APK key rotation via proof-of-rotation attribute

 Old signing certs marked as trusted for granting
signature permissions via self-trusted-old-certs
attribute

Elenkov. Android’s Security Architecture. 2015.
Android Open Source Project: Android Security: Application Signing. 2018

https://usmile.at/symposium/program/2015/elenkov
https://source.android.com/security/apksigning/

16

APK Signature Scheme v2 & v3

Central
Directory

Contents of ZIP entries APK Signing Block
End of Central

Directory

APK Structure:

For each signer:
• Signer’s identity as X509 certificate chain
• Signature as <algorithm, digest, signature> -tuples
• Additional attributes as <key, value> -pairs

Android Open Source Project: APK Signature Scheme v2. 2017

Digest calculated as two-level Merkle tree:

ci= up to 1MB chunk of ZIP section

dn= H(0x5a,| cn|, cn)

digest = H(0x5a, n, d1, d2, ..., dn)

signature =
Sigalgorithm(Ksigner,digest)

n = number of chunks

https://source.android.com/security/apksigning/v2

17

APK Contents

C
o
m
.
e
x
a
m
p
l
e
.
a
p
p
.
a
p
k

META_INF

MANIFEST.MF

<signer>.
(RSA|DSA|EC)

<signer>.SFAndroidManifest.XML

classes.dex

lib

res

assets

native code

non-compiled
resources

application
assets

JAR signature
certificate &
signature file

File digests

18

Package Installation

 Code and resources (common)
 /data/app/com.example.app/

 lib/<arch>/libapp.so

 oat/<arch>/base.odex
 base.apk

 Data (per user)
 /data/user/0/com.example.app/

 files/

 databases/

 shared_prefs/
 /data/user/1/com.example.app/

 ...

C
o
m
.
e
x
a
m
p
l
e
.
a
p
p
.
a
p
k

META_INF

MANIFEST.MF

<signer>.RSA

<signer>.SFAndroidManifest.XML

classes.dex

lib

res

assets

native code
<arch>/libapp.so

non-compiled
resources

application
assets

19

Application isolation

Goal: Applications cannot
interfere with one another

20

Application isolation

Implementation on Android:
 Kernel: Process & memory protection

 Kernel: Linux DAC

 Kernel: Linux MAC (SELinux)

 Kernel: Seccomp filters for app processes

 Middleware: mediation of Binder IPC

 Applications run in separate ART virtual
machine instances

21

Application Sandbox

 Each application assigned a Unix UID

 One UID per user per application (since 5.0)

 UID owns

 Filesystem resources in /data/user/<nr>/

 Processes

 Permissions (!)

 Applications from same developer
(= signed with same developer key)
may share UID sandbox

22

System Third-party applications

Application isolation

Services Applications

• Linux DAC domain (UID)

23

Rooting

 Rooting applications exploit vulnerabilities in
privileged system daemons to obtain shell

 Note: bootloader unlocking intentionally
supported by many OEMs

 e.g. fastboot oem unlock

24

SELinux in Android

 Goal: System services and
applications should not be able
to deviate from their intended
modus operandi

25

SELinux in Android (cont.)

 Implementation on Android:
 Kernel-level MAC (SELinux) –

Policies based on SELinux context

 Middleware MAC (MMAC) –
Policies based on package identity

Smalley, Craig. Smalley, Craig: Security Enhanced (SE) Android. 2013
Android Open Source Project. Security-Enhanced Linux in Android. 2015

http://www.internetsociety.org/doc/security-enhanced-se-android-bringing-flexible-mac-android
https://source.android.com/devices/tech/security/selinux/

26

SELinux in Android (cont.)

 Enforces MAC even for processes running
with root/superuser privileges (since 4.4)

 Blocks many root exploits and
misconfigurations

 Can reduce attack surface of kernel exploits
by limiting access to vulnerable syscalls
 39% of 2016 security issues target kernel as

opposed to userspace (up from 9% in 2015)

 85% of kernel bugs attributed to device drivers
Smalley, Craig. Smalley, Craig: Security Enhanced (SE) Android.2013
Android Open Source Project. Security-Enhanced Linux in Android. 2015
Van Deer Stoep, Jeff. Android: protecting the kernel. 2016
Google. What’s new in Android Security (Google I/O’17). 2017

Skip to App Isolation

http://www.internetsociety.org/doc/security-enhanced-se-android-bringing-flexible-mac-android
https://source.android.com/devices/tech/security/selinux/
https://events.static.linuxfound.org/sites/events/files/slides/Android- protecting the kernel.pdf
https://youtu.be/C9_ytg6MUP0?t=631

27

SELinux in Android

 Type Enforcement

 Access Control Policy described as
rules on abstract labels

 System processes (subjects) and
system resources (objects) mapped to labels

28

SELinux in Android

 Domain - Label for process(es)

 Type - Label for object(s)

 Class - Kind of object being accessed
 (e.g. file, socket)

 Permission - Operation being performed
 (e.g. read, write)

SELinux Project Wiki. ObjectClassesPerms

https://selinuxproject.org/page/ObjectClassesPerms

29

SELinux rules

 EVERYTHING FORBIDDEN BY DEFAULT!

 ALLOW rules define how subjects may
interact with objects

 NEVERALLOW rules prevent specific ALLOW
rules from being added to a policy

30

SELinux rule structure

ALLOW [domain] [type] : [class] { [set of permissions] }

Subject
(e.g. process)

Object
(resource)

Operations
allowed by this

rule on the Class

Class of resource
(e.g. file, socket, directory)

NEVERALLOW [domain] [type] : [class] { [set of permissions] }

31

SELinux attributes

 Attribute
 Identifier assigned to a group of types

 Not a type in itself!

 Used in rules when referring to groups of types

 Cannot be used to label subjects nor objects

 Used to define behaviour common to multiple
types without repeating rules

 Composition of attributes enables modularity

32

Third-party applications

Application isolation (cont.)

System

Services Applications

• Linux DAC domain (UID)
• Linux MAC domain (SELinux)

33

Third-party applicationsSystem

Protected APIs

Services Applications

• Unrestricted service calls
• Approval-based service calls
• Restricted service calls

34

Protected APIs

 Goal: Protect system resources
from unauthorized access

35

Protected APIs (cont.)

 Implementation in Android:
 Protected APIs for ”risky” actions

 Permission-based access control

36

Protected APIs (cont.)

 What kinds of system calls on a smartphone
would warrant protecting and why?

37

Sensitive user data

 Subject to permissions checks:
 Personal information (e.g. contacts)

 Sensitive input devices (e.g.camera)

 Location tracking can be manually disabled

 Actions that cost money (e.g. calls, SMS)

 Device metadata (e.g. logs)

38

Access control & permissions

 Goal: Controls application
access to protected APIs
(and each other)
 User agency vs. protecting system resources

 Usability of security features

39

Permission assignment

 Application declares all permissions in
AndroidManifest.xml

 Permissions assigned to application UID

 Some permissions not user-grantable

 Only available to pre-installed applications

My Messenger

INTERNET;
READ

CONTACTS

40

Android permissions

 4 categories
 Normal

 Dangerous

 Signature

 Signature | Privileged

41

Permission assignment

 Normal permission granted automatically

 Dangerous permissions require user approval at
install time (up to 5.1) or run time (since 6.0)

 Signature permissions granted if app signature
matches the declarer of the permission (or self-
trusted-old-certs)

 Privileged permissions granted only to system apps
 Subject to whitelist by PackageManager (since 6.0)

42

User approval (since 6.0)

 Dangerous permissions
require user approval at
runtime

 If not granted, application
continues to run with
limited capabilities

 Permission managed per
application, per user
 Stored in

/data/system/users/<nr>/
runtime-permissions.xml

43

Scoped directory access (since 7.0)

 Allow access to specific
shared storage directories

Android Developers. Using Scoped Directory Access.

https://developer.android.com/training/articles/scoped-directory-access.html

44

Permission revocation

 May be revoked later
from application settings

 Also install-time
permissions may be
revoked

 applications may not
handle revocation well!

45

Alternatives to obtaining
permissions
 Delegate task to other application using

Intent, e.g. invoke Camera app using
ACTION_IMAGE_CAPTURE Intent

 Caller does not need CAMERA permission

 Caller cannot control the user experience, but
does not have to provide UI for task

 If no default app available, user is prompted to
designate the handler

Android Open Source Project. Permissions Best Practices.

https://developer.android.com/training/permissions/best-practices.html

46

Intents

 Messaging object used for Inter-Component
Communication (ICC)
 Recall: activities, services, content providers,

broadcast receivers

 Addressing
 Explicit – fully qualified component name

 Implicit – Intent filter declared in manifest
 Provides a mechanism for late binding

 Pending Intents
 Token-based access control delegation

47

Binder

 IPC system for object-orientated operating
system services (cf. CORBA/COM)

 Most underlying IPC based on Binder

 Intents & content providers abstractions on top of
Binder

 Cf. local UNIX-domain sockets, signals, filesystem

 Bionic libc doesn’t support System V IPC

 Does not provide mediation by itself

 Access mediated by system services

48

Binder domains (since 8.0)

 Binder traffic split in three domains (contexts)

 Separate device node and context manager

 Access to device node restricted by SELinux policy

 Context manager acts as ”phonebook” for
services available via Binder

IPC Domain Manager Clients

/dev/binder servicemanager Framework / app processes

/dev/hwbinder hwservicemanager Framework / HAL processes

/dev/vndbinder vndservicemanager Framework / vendor processes

Android Open Source Project. Using Binder IPC. 2018

https://source.android.com/devices/architecture/hidl/binder-ipc

49

Binder Service Discovery

Linux
Kernel

Binder Driver (/dev/binder)

ServiceManager
(servicemanager)

System Server
(system_server)

Application(s)

b
i
n
d
e
r
_
b
e
c
o
m
e
_
c
o
n
t
e
x
t
_
m
a
n
a
g
e
r
(
)

ioctl(BINDER_SET_CONTEXT_MGR)

Services List
(*svclist)

d
o
_
a
d
d
_
s
e
r
v
i
c
e
(
)

d
o
_
f
i
n
d
_
s
e
r
v
i
c
e
(
)

Other System
Services &
Managers

Activity
Manager

Package
Manager

Framework library

1

2
3

Application
Components

e.g. Activity, Service
etc.

4

50

Starting an Activity

Linux
Kernel

Binder

System Server
(system_server)

Application

Component
e.g. Activity, Service etc. Package Manager

Application
Framework

Activity
Manager

ICC Reference Monitor

RPC
Stub

M
an

ifest

startActivity(intent)

checkCallingPermission(…)

PERMISSION_GRANTED

Other System
Services &
Managers

Activity

onCreate(…)1
3

4

2

transact(…)

51

Starting an Activity

Linux
Kernel

Binder

System Server
(system_server)

Application

Component
e.g. Activity, Service etc. Package Manager

Application
Framework

Activity
Manager

ICC Reference Monitor

RPC
Stub

M
an

ifest

startActivity(intent)

checkCallingPermission(…)

PERMISSION_DENIED

Other System
Services &
Managers

1
3

4

2

transact(…)

SecurityException

52

Hardware-based security
features

 Goals:

 Strong but easy to use
user authentication

 Secure storage

 Platform integrity

53

Hardware-based security
features

 Implementation on Android:

 Fingerprint / Gatekeeper

 Keychain / Keystore

 Full-disk / File-Based encryption

 Verified boot

54

Hardware Abstraction Layers

 Interface between device independent code and
device-specific hardware implementation

 Prior to 8.0 HALs packaged as shared libraries
 Run in same security context as client process

 Process needs all permissions required by HAL

Linux
Kernel

System
Server

HAL 1 HAL 2

Driver 1 Driver 2 Driver n

HAL n

• SELinux permissions for server & all HALs

...

...

Security boundary

Security boundary

Android Developers Blog. Shut the HAL Up. 2017

Driver access

https://android-developers.googleblog.com/2017/07/shut-hal-up.html

55

Hardware Abstraction Layers

 In 8.0 HALs moved into sandboxed processes
 HAL processes require only permissions for HAL
 Increased IPC overhead between client and HAL
 HAL processes practical after improvements to Binder

driver (scatter-gather, fine-grained locking, real-time
priority inheritance)

Linux
Kernel

System
Core

System
Server

HAL
daemon 1

HAL
daemon 2

Driver 1 Driver 2 Driver n

HAL
daemon n...

...

• SELinux permissions for server
Security boundary

Security boundary

Security boundary

Android Developers Blog. Shut the HAL Up. 2017

Driver access

Binder access

https://android-developers.googleblog.com/2017/07/shut-hal-up.html

56

Authentication

 Keyguard

 Pattern

 PIN / Password

 Gatekeeper HAL (since 6.0)

 Allows Keyguard to make use of native security
features

 Fingerprint HAL (since 6.0)

 Access to vendor-specific fingerprint hardware

Android Open Source Project. Gatekeeper.
Elenkov. Password storage in Android M. 2015.

https://source.android.com/devices/tech/security/authentication/gatekeeper.html
http://nelenkov.blogspot.com/2015/06/password-storage-in-android-m.html

57

Authentication (cont.)

 TrustAgentAPI (since 5.0)
 Enables services that notify the system about whether

they believe the environment of the device to be
trusted

 Smart Lock Trust Agent (since 5.0)
 Trusted Bluetooth device
 Trusted NFC
 Trusted place (via geofencing)
 Facial recognition
 On-body detection

Elenkov. Dissecting Lollipop’s SmartLock. 2014.
Nexus Help: Set up your device for automatic unlock.
Android Developers. Creating and monitoring Geofences.

http://nelenkov.blogspot.com/2014/12/dissecting-lollipops-smart-lock.html
https://support.google.com/nexus/answer/6093922?hl=en
https://developer.android.com/training/location/geofencing.html

58

Android Keystore

 Protects cryptographic keys from extraction even if
application or OS is compromised
 KeyChain API for system credentials (since 4.0)
 KeyStore API (Java CE) for application-bound keys

 Hardware-backed keystore binds keys to device
(inc. operating system and patch level of system image)
 Keys not exposed unencrypted outside secure h/w
 KeyInfo.isInsideSecureHardware() (since 6.0) indicates if key is stored

in hardware keystore

 KeyChain API is used for Wi-Fi and Virtual Private Network
(VPN) certificates

Google. Android for Work Security white paper. 2015

Secure
Storage

Secure Storage
Provider

https://static.googleusercontent.com/media/www.google.co.jp/en/US/work/android/files/android-for-work-security-white-paper.pdf

59

Keymaster

 KeymasterHAL
 Access to hardware-backed keystore
 Assymmetric key generation,

signing and verification (since 4.1)
 Binder IKeyStoreInterface (since 4.3)
 Symmetric key support, access control, public key import and

private / symmetric key import (since 6.0)
 Key attestation (since 7.0)
 ID attestation (since 8.0)
 Secure key import (since 9.0)
 Protected Confirmation (since 9.0)

 Strongbox Keymaster
 backed by hardware security module with discrete CPU, secure

storage, true RNG, tamper protection (since 9.0)

Android Open Source Project. Keymaster. 2018
Elenkov. Keystore redesign in Android M.2015.

Elenkov. Credential storage enhancements in Android 4.3. 2013.

Android Developers. Android 7.0 for Developers. 2016
Android Developers. Key Attestation. 2018
Android Developers. Android 9 features and APIs. 2018

Device
Identification

Isolated
Execution

Device
Authentication

Secure
Storage

HW Security API

https://source.android.com/devices/tech/security/authentication/keymaster.html
http://nelenkov.blogspot.fi/2015/06/keystore-redesign-in-android-m.html
http://nelenkov.blogspot.ch/2013/08/credential-storage-enhancements-android-43.html
https://developer.android.com/about/versions/nougat/android-7.0.html#key_attestation
https://developer.android.com/training/articles/security-key-attestation.html
https://developer.android.com/about/versions/pie/android-9.0

60

Key / ID attestation

 Signed statement that improves confidence that
applications keys stored in hardware-backed keystore
 attestation certificate chain root cert signed with

Google attestation root key
 accessed via getCertificateChain() for KeyStore object’s
 must be validated on separate trusted server!

 ID attestation provides proof of hardware identifiers
 E.g. brand, manufacturer, model, serial number or IMEI

Android Open Source Project. Key and ID attestation. 2018.
Android Developers. Key and ID attestation. 2018
Android Developers. Verifying hardware-backed key pairs with Key Attestation. 2018

Device
Identification

Device
Authentication

HW Security API

https://source.android.com/security/keystore/attestation
https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/articles/security-key-attestation

61

Qualcomm Keymaster architecture

Elenkov. Keystore redesign in Android M.2015.
Elenkov. Credential storage enhancements in Android 4.3. 2013.

P
ro

p
ri

et
o

ry
(d

ev
ic

e
 s

p
ec

if
ic

)

Android OS

Hardware

libQSEEComAPI.so

Keymaster HAL

libkeymaster.so

IKeyStoreService

AndroidKeyStore Provider

Java Cryptography Extensions (JCE)

Application Application

Qualcomm Secure Execution
Environment (QSEE)

KeyStore Trusted App

ARM TrustZone

Trusted Execution
Environment (TEE)

QSEE Communication API

KeyStoreService

Skip to End

http://nelenkov.blogspot.fi/2015/06/keystore-redesign-in-android-m.html
http://nelenkov.blogspot.ch/2013/08/credential-storage-enhancements-android-43.html

62

Full Disk Encryption

 Block-device encryption based on dm-crypt

 Encrypted on first boot (since 5.0)

 AES 128 CBC and ESSIV:SHA256

 DEK encrypted with AES 128

 KEK derived from user PIN / password / pattern

+ hardware-bound key stored in TEE (since 5.0)

 Crypto acceleration through hardware AES
(e.g. dm-req-crypt)

Android Open Source Project. Full Disk Encryption.
Elenkov. Hardware-accelerated disk encryption in Android M. 2015.

https://source.android.com/devices/tech/security/encryption/index.html
http://nelenkov.blogspot.com/2015/05/hardware-accelerated-disk-encryption-in.html

63

File-Based Encryption (since 7.0)

 Direct Boot enables supported apps to
operate before user unlocks device

 Two storage locations for data:

 Credential Encrypted (CE) storage (default)
only available after user has unlocked device

 Device Encrypted (DE) storage available during
Direct Boot and after user has unlocked device
(requires hardware-backed Keymaster)

Android Open Source Project. File Based Encryption.
Android Developers. Supporting Direct Boot.

https://source.android.com/security/encryption/file-based.html
https://developer.android.com/training/articles/direct-boot.html

64

Verified Boot

 Based on dm-verity kernel feature

 Calculates SHA256 hash over every 4K block
of the system partition block device

 Hash values stored in hash tree

 Tree collapsed into a single root hash

 Hashes verified on-demand on disk access

 Signature of the root hash verified with public
key included on the boot partition

 Must be verified externally by the OEM
Android Open Source Project. Verified Boot.
Cryptsetup. DMVerity.

Boot
Integrity

Boot
Verifier

https://source.android.com/devices/tech/security/verifiedboot/
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity

65

Verified Boot Hash Tree

Android Open Source Project. Verified Boot.
Cryptsetup. DMVerity.

https://source.android.com/devices/tech/security/verifiedboot/
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity

66

Mobile Software platform security

Administrator

User

Application
Installer

Reference Monitor

Mobile
Device

System Updater Policy
Database

Platform Security Architecture

Application

Boot
Integrity

Device
Identification

Application
Database

Developer

Centralized
Marketplace

Operator

Auxiliary
Marketplace

Operator

Isolated
Execution

Device
Authentication

Platform
Provider

Application
Loader

Device
Management

Third-party
library

Third-party
service

H
W

 S
ecu

rity A
P

I

Secure
Storage

Boot
Verifier

Secure Storage
Provider

Platform Security
Component

Third-Party Software
Component

Role

Legacy DAC
Execution
Protection

Hardware-Security
Functionality

Legend

Software Isolation

System
service

System
library

IPC

67

Did you learn:

 Android as a software platform
 Internals and surrounding ecosystem

 Security techniques in Android:
 Application signing

 Application isolation

 Permission-based access control

 Hardware-based security features

Contributors: Thomas Nyman, Hans Liljestrand, Filippo Bonazzi , Sini Ruohomaa, N. Asokan

68

Plan for the course

 Lecture 1: Platform security basics

 Lecture 2: Case study – Android OS Platform Security

 Lecture 3: Mobile platform security

 Lecture 4: Hardware security enablers

 Lecture 5: Usability of platform security

 Lecture 6: Summary and outlook

 Lecture 7: SE Android policies

 Lecture 8: Machine learning and security

 Lecture 8: IoT Security

