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Abstract 

This thesis studies applicability of certain mathematical methods in the assessment of the quality 
of operation of a hydro-power cascade. The quality is approached from the aspects of maximiza-
tion of the benefits and the assessment of the behaviour of the river. 
 
The thesis proposes two new approaches that can be utilized in the consideration of the ex post 
optimality of the production. The first one is an ex post optimization methodology that is based on 
a mathematical river model. Using the methodology, the efficiency of the actual outcome can be 
assessed with the real constraints but without the uncertainties of the real decision-making situa-
tion. The methodology does not pay attention to the economic value of the different components of 
the production or to the production as a part of a larger portfolio. The methodology is demonstrat-
ed with a case study. The other approach is the operative buffer that depicts the water level of a 
reservoir as a time-based buffer with respect to the water flowing into the reservoir. In addition, 
with the aid of the buffer, one can determine and unify the risk levels regarding to the water man-
agement.  
 
The study of the behaviour of the river is based on the assumption that the behaviour should be 
predictable. Therefore, the thesis focuses on the centrality problem of the curves, or, functional 
data on a general level. The selected tool is a field of mathematical statistics, Functional Data 
Analysis (FDA), which is a subject of growing interest. In the thesis, certain functional depth func-
tions are applied in the assessment of typicality of multivariate functional data. We propose a new 
approach, Pareto-efficient depth, to define the most typical observations. It combines the Pareto-
efficiency, robust statistical measures and FDA in a practical way. For the data of this thesis, the 
new approach seemed more suitable than the other depth functions, and it could be an interesting 
subject of further studies. 
 
In all, the applicability of the methods discussed can be considered reasonable as long as their 
weaknesses are taken into account. The functional approach to the process quality assessment is 
justified, even though unambiguous definitions of the best or of the typical could not be agreed 
upon. In addition, monitoring the efficiency forms an incentive to continuously improve both the 
performance of the operation and the optimization model. 
 

Keywords ex-post optimum, multicriteria decision-making, hydro-power, functional data-

analysis, depth function, Pareto-depth 
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Tiivistelmä 

Tässä diplomityössä tutkitaan eräiden matemaattisten menetelmien soveltuvuutta vesivoimaket-
jun operoinnin laadunarviointiin. Laatua tarkastellaan sekä tuotannon hyötyjen että joen käyttäy-
tymisen näkökulmasta. 
 
Hyötyjen arviointiin esitetään kaksi menetelmää, joiden avulla tuotannon tehokkuutta voidaan 
arvioida jälkikäteen ilman todellisen päätöksentekotilanteen epävarmuuksia. Ensimmäinen on 
matemaattiseen jokimalliin perustuva optimointimenetelmä, jolla arvioidaan toteutuneen tuotan-
non tehokkuutta todellisen päätöksentekotilanteen reunaehdoilla. Menetelmän toimivuutta tar-
kastellaan käytännön esimerkin avulla. Menetelmä ei huomioi tuotannon eri komponenttien ta-
loudellista arvoa eikä sen kokonaisarvoa osana laajempaa portfoliota. Toinen menetelmä on ope-
ratiivinen varaumapuskuri, joka kuvaa laitosaltaan pinnankorkeuden aikamääräisenä puskurina 
suhteessa altaaseen tulevaan vesimäärään. Puskurin avulla voi lisäksi määrittää ja yhtenäistää 
vedenhallintaan liittyviä riskitasoja. 
 
Joen käyttäytymisen osalta työssä oletetaan, että sen ennakoitavuus on tärkeää muille joen käyttä-
jille. Siksi työssä paneudutaan menetelmiin, joiden avulla voidaan määrittää käyrämuotoisen, tai 
funktionaalisen, datajoukon tyypillisimmät havainnot. Arvioinnin työkaluksi työssä valittiin ma-
temaattisen tilastotieteen osa-alue funktionaalinen data-analyysi. Työssä sovelletaan sen tunnettu-
ja menetelmiä tyypillisen havainnon määrittämiseen moniulotteisesta funktionaalisesta otoksesta. 
Työssä esitellään lisäksi uusi lähestymistapa löytää tyypillisimmät havainnot. Menetelmä yhdistää 
Pareto-tehokkuuden, robustin tilastotieteen ja funktionaalisen data-analyysin käytännönläheisellä 
tavalla. Uusi lähestymistapa osoittautui tämän työn aineistoissa toimivammaksi kuin muut esitetyt 
menetelmät, ja menetelmä voisi olla mielenkiintoinen jatkotutkimuksen aihe. 
 
Kaiken kaikkiaan esitettyjen menetelmien toimivuus arvioidaan kohtuulliseksi, kunhan niiden 
heikkoudet tunnistetaan. Prosessin laadunarvioinnissa funktionaalinen lähestymistapa on perus-
teltu, vaikka yksiselitteisiä määritelmiä parhaalle tai tyypilliselle havainnolle ei löytyisikään. Lisäk-
si tehokkuuden tarkkailu kannustaa sekä operoinnin että joki- ja optimointimallin jatkuvaan ke-
hittämiseen. 
 

Avainsanat ex-post optimi, monitavoiteoptimointi, vesivoima, funktionaalinen data-analyysi 
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Special Terms

bagplot A bivariate extension of boxplot. Visualizes distribution of the data
data. 37

behaviour of the river All the dynamic things that can be observed from
the river bank, including the water levels, the flows and their changes.
5, 30

convex Any two points of a convex set can be joined with a line whose all
points belong to the set. A function is called convex if its epigraph
forms a convex set. 8

depth Measure of centrality in multi-dimensional setting. 35, 40

ex post Based on forecasts rather than actual results, opposed to ex ante.
[Oxford Dictionaries, 2016]. 1, 13, 56

Functional Data Analysis FDA, A field of mathematical statistics where
functions, not only points, are seen as observations. 5, 31

Kemijoki Oy (KEJO) Hydro-power company in Finland. This thesis was
done for this company. 2

Key Performance Indicator KPI, an indicator for measuring the perfor-
mance of an organization in its pursue to reach its key target(s). 1

Linear Programming Algorithm that solves linearly formed optimization
problems. Linear mapping L(·) satisfies the following: L(ax + by) =
aL(x) + bL(y). 12, 14

Pareto-optimality A state of multi-objective allocation of resources where
one criteria cannot be improved without making another worse. 9, 33,
46, 56
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1 Introduction

1.1 Problem statement

This thesis studies different mathematical methods to assess the quality of op-
eration of multiple connected hydro-power plants, or, a cascade. The quality
of operation refers to the level of excellence of the operational actions con-
ducted under a wide range of uncertainties regarding to the future. Excel-
lence is defined here rather vaguely as responsibly optimal and its evaluation
in this thesis is restricted to the two following aspects. The first objective
is to maximize the benefits gained from the production, and the second one
is to maintain the river behaviour predictable. The former will focus on
the short-term optimization problem and especially on the ex post optimal
efficiency of the dispatch problem. The methodology proposed extends the
current Key Performance Indicators. The latter discusses, on a general level,
the centrality problem of multivariate curves, or functional observations in
the context of the hydro-power cascade.

The definition of the quality of operation may be subjective, depending on
the interests of the person. The change of quality, as a concept, instinctively
incorporates juxtaposition of entities that should be comparable. In this
thesis, the reference entity is the relevant history. Such an entity could
be, for example, another cascade, which would result in a comprehensive
benchmarking study. The thesis focuses on mathematically interesting and
conceptually relevant measures. Intentionally, some aspects of the quality of
operation are addressed only shortly or omitted if they relate more to other
disciplines. For example, the quality of communication between different
parties during an electricity network issue is essential when it comes to the
safety issues but still is excluded from the scope of the thesis. Even though
the thesis discusses certain quantitative measures and their properties, a
qualitative motivation plus critique is provided for each one.

The thesis consists of two thematically independent main sections. Section
2 will study the assessment of the optimal operation both theoretically and
empirically, whereas Section 3 focuses on the general question: how to define
"normal" among multivariate curves?
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1.2 Background and motivation

The hydro-power company Kemijoki Oy (later "KEJO") owns 20 hydro-
power plants of which 16 are located in the Kemijoki river. The nominal
power capacity is more than 1100 MW, and the energy production of the
year 2015 ecxeeded 5 TWh. The stock of KEJO is divided into the capital
and the energy shares. The owners of the energy shares obtain all the energy
produced. KEJO manages the production abilities and produces the energy
efficiently and responsibly for the shareholders. [Kemijoki Oy, 2016]

The shareholders are independent market players and mutual competitors,
whereas KEJO is an impartial company between them. One of the share-
holders is the balance responsible party1 of the asset. The other shareholders
order their share of energy from the balance responsible party according to
certain governing rules.

The Kemijoki river system is illustrated in Figure 1, where circles correspond
to the regulated reservoirs, boxes to the plants and the connecting lines to the
main course of the river. The regulated lake in the middle divides the system
into two controllable sections. It takes about 12 hours for water to pass
through the first section and about 30 – 40 hours through the other. There
are small reservoirs before each plant, which enable flexible production. The
total production capacity exceeds 1000 MW and the daily changes pose a
valuable balancing potential, as demonstrated in Figure 2. In all, the river is
a dynamic system and its real time operation depends on – and is restricted
by – the past decisions and is highly driven by the future expectations.

Earlier, the river was physically operated by KEJO. In 2014, the owners de-
cided to transfer also the operation to the balance responsible party. The aim
of the transfer was to improve the efficiency of the physical operation and the
fluency of trading. During the transfer process, the questions related to the
quality became urgent for two main reasons. Firstly, the other shareholders
wanted to ensure that the quality would improve as promised. Secondly, as
the legal responsibilities and the license to operate the river will remain at
KEJO, it is essential for it to manage the quality improvement process and

1"An electricity market party which has a valid balance service agreement with Fingrid.
[...]" Fingrid is the transmission system operator (TSO) in Finland. It owns the high-
voltage grid and takes care of cross-border connections. For more information, see http:
//www.fingrid.fi/en/.
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Figure 1: The map and the schematic picture of the Kemijoki river system.
The source of the map and the information: Kemijoki Oy

take into account all the relevant stakeholders and users of the river in the
long term. The new operator, as a shareholder, has a strong incentive to
achieve the same objectives in both the short and the long term.

The operation of hydro-power is one part of the water resource management
which includes assessment of contradicting interests, effects on the environ-
ment and legal issues, to name a few. There are advantages and disadvan-
tages to water resource management in general. Äijö et al. [1992] provides
a profound view on those questions. For example, Siivola [1992] discusses
questions related to recreational use. She summarizes that advantages of
recreational usability are not easy to valuate, but it often prevents different
industries from gaining more additional value. Additionally, Kovanen [1992]
summarizes the aspect of power engineering and concludes that hydro-power
production affects the environment only locally, whereas, for example, coal

3



Figure 2: Typical production rate of the river Kemijoki during a week.
Source: Kemijoki Oy

and peat affects the environment when mined, transported, and burned. In
all, utilizing one resource for many purposes is a multicriteria problem.

The multicriteria decision analysis aims to holistically evaluate contradicting
decision alternatives. It structures the problem and elicits the values of differ-
ent objectives within an interest group and between different groups. Related
to the water resource management, Marttunen [2011] presents a recent view
on the subject. He proposes a methodology called Decision Analysis Inter-
view that is implemented in five real cases in Finland. The cases consist
mainly of the lake regulation problems that have a significant impact on a
large group of different stakeholders and the environment. The decision anal-
ysis interview methodology takes into consideration the contradicting parties.
Along with the methodology and the case studies, one of the key results is
that the level of interaction during the process correlates highly with the inte-
gration of the analysis. Namely, if only a few people collaborate, the analysis
probably does not cause the desired impact in the real world. To assess such
an impact, Palonen [2006] presents a real-world case where the regulation
rules were adjusted in order to better comply with the recreational use. Us-
ing surveys and pricing trends of the real properties on the water front, the
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local impact of the changes were assessed as positive. However, not much at-
tention was paid to the resulting additional or lost value of the hydro-power
players. From the same point of view, Nurmi [2010] considers the effects
of fluctuation of water levels on the environment and also general questions
related to indicators. However, the daily fluctuation or changes in discharges
are not covered.

Section 2 discusses the aspect of optimality. The holistic evaluation of op-
timality proves difficult even afterwards because it lacks the counter-factual
outcome. In a real decision-making situation, there are many uncertainties
regarding the future. An ex post optimization methodology is proposed in
this thesis. It can be utilized in the assessment of the efficiency of the his-
torical outcome, without the uncertainties. The optimality of the possible
portfolios, or, of the bids of the owners are excluded from the scope of this
thesis.

Section 3 focuses on the statistical study of curves, Functional Data Analy-
sis. The high-level aim is to define the typical behaviour of the river. The
behaviour includes matters that can be observed from the river bank, for
example water levels, flows, and their changes. For an operator, it is impor-
tant to comprehend the behaviour as the operation affects the environment
and the utility of the river to its other users. The utility of this approach is
to develop the operation so that undesirable effects could be avoided while
maintaining an optimal production. However, this thesis mainly discusses
the problem of normality among curves on a general level. The examples
base on the contextual data.
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2 Assessing optimality of the production

2.1 Optimization of hydro-power production

2.1.1 Physics of hydro-power production

The underlying source of energy for hydro-power is the sun. It enables the
ongoing process of water gaining potential energy while rising up from lower
levels to the upper soil. The hydro-power production transforms the poten-
tial energy of water into a relevant form of energy, in practice, electricity.
The potential difference is captured at one location by constructing dams on
rivers, and the hydro-power plant is often integrated into a dam. The main
components of a hydro-power plant are depicted in Figure 3. The turbine
transforms the kinetic energy of the flowing water, Q, into rotational energy
which the generator eventually transforms into the electricity. The potential
energy difference is determined by the geodetic head, Hg, that is the dif-
ference between the water levels upstream and downstream from the plant.
The geodetic head is subtracted by the losses in the intake screen and in the
waterways before and after the turbine. The resulting potential difference is
called the net head, h. For a more comprehensive explanation of the physics
of the hydro-power production, see for example INSKO [1978].

The turbine itself has an efficiency that depends on the net head and the flow,
η(h,Q). Common turbine types include Kaplan, Francis, and Pelton, each
possessing different properties. In this river, the geodetic heads are quite low,
and therefore, the Kaplan-type turbine is the most suitable ([INSKO, 1978,
pp. 93 – 94]). Typically, the efficiency of a Kaplan-turbine is approximately
90 – 95 %. An example is illustrated in Figure 4, and it is possible to deduce
that the efficiency, η, of the Kaplan turbine is quite robust against changes
in the discharge, Q, or in the net head, h. The axial power of the turbine
is then the net potential energy difference subtracted by the turbine losses.
It is shown in the equation (1), where ρ denotes the density of the flowing
water. The generator has losses of approximately 1 . . . 3% which are reduced
from the axial power before the electricity grid.

P (Q, h) = g · h ·Q · η(h,Q) · ρ (1)

6



Figure 3: The main components of a hydro-power plant. The figure
is published under the Creative Commons Attribution 2.5 Generic license
by Tomia (Own work) https: // commons. wikimedia. org/ w/ index. php?
curid= 3302749

Figure 4: An example of a Kaplan turbine efficiency as a function of net head
and discharge ratio. Source: Kemijoki Oy
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In the river cascade illustrated in Figure 1, the plants are physically connected
by the river course2 as the water flows from the upper plant(s) to the lower
ones. The connection system plays a crucial role in the operation, because the
regulating volumes in almost all the reservoirs are so small that they could
properly operate only a few hours without feeding water from the upper
plants. The synchronous operation is important also because the empty
reservoirs reduces the potential energy difference. To give a concrete example,
an average decline of 5 cm in all the reservoir levels implies an annual loss of
about 10 GWh.

2.1.2 Optimization in general

Optimization means actions of "making the best or most effective use of a
situation or of a resource" [Oxford Dictionaries, 2016]. The phases of op-
timization could be structured as setting the objective, becoming aware of
relevant boundaries and then determining the best alternative among the
feasible solutions. If the two first phases can be stated mathematically, the
last phase is a mathematical optimization problem. The mathematical opti-
mization finds the solution (if any) to the modelled problem, and the solution
is optimal with respect to that very model. The solution is not necessarily
real-world optimum due to the erroneous model. Depending on the math-
ematical model, the optimization problem can be grouped for instance into
linear or non-linear, convex or non-convex and integer problems.

The general optimization problem is stated in the equation 2, where x is a
decision variable and S defines its feasible region. The minimization of an
objective function can be turned into maximizing by changing the sign. If
there is only one objective function (m = 1), then the result of the optimiza-
tion is called an optimal solution. If there are many conflicting objectives
(m > 1), the process is called multi-objective optimization, and its result is
a set of Pareto-optimal solutions. [Miettinen, 2008, p. 2]

min
x∈S
{f1(x), f2(x), . . . , fm(x)} (2)

2Another form of physical connection is the electricity grid. It is essential when oper-
ating, but it is excluded from the scope of the thesis.
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Pareto-optimality is defined in Definition 2.1. All the members of the Pareto-
set are mathematically equally appropriate, also known as non-dominated or
Pareto-efficient solutions. If the set consists of more than one member, the
last phase of the optimization procedure is to find the most preferred solution
among the non-dominated ones. A prerequisite for decision-making is that
the decision-makers are aware of the feasible alternatives. The problem of
presenting the solutions to them in understandable way is discussed more for
instance in Korhonen and Wallenius [2008]. A visualization of the Pareto-
optimal solutions in the bivariate case is given in Figure 5. The sub-figure
in the bottom-right corner demonstrates that sometimes the results may be
intuitively surprising as quite distant solutions prove to be non-dominated.
If the edge of the heart-like set were only a bit further away from the centre,
the edge would be the only non-dominated solution.
Definition 2.1. Pareto-optimality:
Let X ∈ Rk×n denote domain, k-vector x ∈ X observation and XPO ⊂ X the
set of Pareto-optimal observations. Then, x∗ ∈ XPO, if 6 ∃ x ∈ X such that

fi(x) ≥ fi(x
∗)∀ i = [1, . . . ,m] (3)

∃ j = [1, . . . ,m] s.t. fj(x) > fj(x
∗), (4)

where m is the number of objective functions fi(·). If only the first condition
(3) holds, x∗ is called weakly Pareto-optimal.

The multi-objective problem can be transformed into single objective prob-
lem by mapping all the objectives into one. However, the objectives are not
necessarily commensurable. For example, one might prefer two star hotel for
e150 to one star hotel for e80 but prefer four star hotel for e250 to five star
hotel for e290. In other words, the stars cannot be weighted consistently
with money. So, it is difficult to determine the trade-offs between different
alternatives before the alternatives are known. Moreover, the a priori pref-
erences might not correspond to the solution that the decision-maker would
have selected from the non-dominated solutions. Furthermore, the feasible
region may diminish if the constraints on the objectives are set before the
alternatives are known. [Branken et al., 2008, Preface]

In practice, however, the preferences are often determined a priori. Then
the multi-objective optimization problem is reduced to single-objective by
minimizing the weighted sum of normalized objective functions, f ∗i (eq. 5).

9



Figure 5: Pareto-optimal solutions with different objective combinations
shown on a bivariate non-convex set. Pareto-optimal solutions are math-
ematically equally appropriate.

Its result is at least weakly Pareto-optimal3. There are serious drawbacks
in this method. Firstly, all the Pareto-efficient solutions are not necessarily
found in non-convex problems. Secondly, it is difficult to normalize the weight
functions and to determine globally relevant weights. Moreover, in multi-
objective linear problems, the weights that result in a non-dominated solution
are not unique. As a consequence of that, very different weights can produce
similar Pareto-optimal solutions, or slightly different weights may produce
remarkably different solutions. [Miettinen, 2008, pp. 8–13]

min
x∈S

m∑
i=1

wif
∗
i (x), wi ≥ 0∀ i (5)

3The result is Pareto-optimal if wi > 0 ∀ i. For proofs, see e.g. [Miettinen, 2012, pp.
78 – 79]
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2.1.3 Hydro-power optimization

The objective of hydro-power optimization is to maximize the sum of the net
present values of different future value streams. Each value stream depends
on time and consists of the production-related quantity and the correspond-
ing unit price or cost. The most important value stream of the hydro-power is
the flexible energy production whose value is determined in the Nordic energy
market at different time-scales. The other value streams of the hydro-power
are the balancing power, the imbalance power, the frequency controlled re-
serves and its value as a part of a production portfolio. For more information
about the free electricity markets in the Nordic countries, see for example
[Kerttula, 2012, Chapter 2] or the web pages of the market place Nord Pool
and the transmission system operators4.

Let k-vector X (t) denote the magnitude of the production related quantity,
k-vector β(t) the corresponding unit value or cost, and r the discount rate.
Then, the objective can be stated very generally as in the equation 6. The
elements of X (t) are not independent as, for example, selling the frequency
controlled reserves reduces the capacity of regulating power. In other words,
one has to dynamically allocate the resource into many markets.

max
X∈S

∫ ∞
t=0

e−rtX (t)T · β(t)dt (6)

One can control only restricted amount of the factors related to the different
elements of X and β. For example, forecasting of the prices includes fore-
casting of both the total consumption and the aggregated production that
again depend, inter alia, on the weather and on both the economic and the
political circumstances, at least on the long term. Moreover, in the efficient
market, the magnitude and the price are theoretically interdependent; the
more is supplied the less is the price. In all, this formulation is not very
valuable from practical point of view but still forms the backbone of the
physical procedures in reality. In practice, the time horizon does not reach
infinity as the discount factor diminishes the weight of the distant future.
The time horizon can be divided into different lengths. The strategic horizon

4At the time of the writing the web-page of the market place can be found at http:
//www.nordpoolspot.com. For the web-pages of the Finnish TSO Fingrid, see http:
//www.fingrid.fi/EN/.
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is counted in decades, the tactical horizon in months or years and the short-
est time-span is days or hours, and it is the actual operation. This thesis
focuses on the short-term problem.

The feasible region, S, takes into account the dynamics of the cascade, all
the operational restrictions, such as the water regulation limits of the reser-
voirs, and all the technical restrictions, including the maximum production
outputs of the generating units. The tactical objectives, such as the volume
of the water in the regulated lakes, must be respected in the short-term opti-
mization. Such an objective can be implemented, for instance, as one value
stream component by applying negative prices for the deviation from the
objective.

Harpman [2012] separates the short-term problem into the dynamic economic
dispatch problem and the unit dispatch problem. The unit dispatch problem
is computationally complex binary problem where the operating units are set
on or off. However, in the end it is actually tightly related to the economic
problem. In general, the short-term problem belongs to the class of non-linear
constrained optimization problems. Non-linearities arise from the generation
and head relationships and from delay models.

The problem can be solved in many ways, depending on the model designed.
One common way is to model the problem as a linear model that can be
solved using an algorithm called Linear Programming. Examples of it are
presented, for instance, in Zheng et al. [2013] and Kerttula [2012]. A linear
model can be solved also by the control-theory approach. An example of
a linear state-space model is shown in Pursimo and Lautala [1993]5. As
the phenomenon introduces stochastic characteristics, such as the tributary
waters and the prices in the future, the stochastic optimization could be
considered. A long-term stochastic optimization application is provided, for
instance, by Flach et al. [2010].

Another family of solving methodologies are heuristic methods that – in
theory – do not set limits on the modelling level. Thus the model can be
non-linear and non-convex. However, their performance cannot be guaran-
teed as the solution found is not necessarily the optimum. On the other hand,
if the method does not find any solution, it does not prove that such would

5The model is designed for KEJO and is as such worth mentioning here, even though
the formulation of the optimization problem does not reflect the current needs.
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not exist. However, for example [Zanakis and Evans, 1981, pp.85–86] gives
many reasons for using the heuristic methods. The reasons are that they are
easier to implement and the model might be more relevant. They claim that
"a fast near-optimal solution makes more sense than a time-consuming exact
solution to an inexact problem." In the context of hydro-power optimization,
Harpman [2012] discusses for example Particle Swarm Optimization and Dif-
ferential Evolution.

2.1.4 Ex post optimization of the hydro-power production

An ex ante choice refers to a decision made under uncertainties and expec-
tations whereas ex post is looking backwards to the occurred outcome. In
reality, the hydro-power production is optimized ex ante under expectations
regarding to the different markets and hydrological factors. Starr [1973] dis-
cusses the optimality of production and allocation under uncertainty in terms
of general economy, but the theme can be applied to electricity markets as
well. He shows that ex ante optimal allocation of resources over time im-
plies an ex post optimal outcome if and only if the subjective probability
distributions of the future states are identical. If the universal similarity of
the distributions does not hold, then the result will not be ex post optimal.
The reason is that if the subjective probabilities are different ex ante, their
marginal rates of substitution are different ex post. He shows that a nec-
essary condition for Pareto optimum is the equality of those rates. Harris
[1978] discusses the results of that article and proposes that the conflict be-
tween the ex ante and ex post optima is caused by "changing tastes". Also,
Conrad and Unger [1987] develops different ex post performance tests on
both the short and the long term optimization, based on the historical data
of real industries. The figure 6 illustrates the distributions of prices of some
relevant electricity markets in Finland. All the distributions are skewed, of
which the balancing power market is an extreme example, as the maximum
prices exceeded 2000 e/MWh in that year. The volume of the energy market
(Spot) dominates the other two.

Zheng et al. [2013] proposes "the post-evaluation" of hydro-power production
based on the actual operation data. The setup is the Three Gorges dam in
China with its 34 generating units and the two surrounding plants. The
idea is to develop "potential hydro-power output" that is the difference of
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Figure 6: Distributions of hourly prices of certain relevant market products
in 2015. The volumes of the markets differ significantly from each other. The
units of frequency controlled reserve (FCR-N) is e/MW but the others are
e/MWh. For visual reasons, prices over e150/unit are stacked at 150.

the actual and the afterwards, or ex post, optimized results. He proposes a
dual methodology consisting of "the integrated evaluation model" and "the
sensitivity analysis". The former takes into account the river as a whole,
whereas the latter studies the sensitivity of power outputs to the expected
external inflow to reservoirs or controlled flood level. The river is modelled
linearly and problem is solved using Linear Programming for a period of one
year at a time. The results propose that the energy gained is 3 – 10 % (1 – 6
TWh) less than the potential maximum, depending on the hydrological year.
The results of the sensitivity analysis are as significant. For example, if the
forecast accuracy factor (defined on the page 1170 of the article) increased
from 0.80 to 0.95, the output was 3.8% larger than the actual output. The
results of the flood control limits are also of that magnitude.

The methodology proposed by Zheng et al. [2013] is not directly applicable
to the Kemijoki river. Kemijoki consists of 16 remarkably smaller plants and
therefore the unit dispatch problem does not play that significant role in the
optimization. Furthermore, the dynamics of the water flowing in the long
cascade differs significantly from the short cascade. In the following, an ex
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post optimization methodology is defined for longer cascades to determine
the optimality of the actual operation.6 For a case example, see Section 2.1.6.

First, the measured hourly turbine-specific discharges, the schedule, is sim-
ulated using a river model. Next, the schedule is optimized with respect to
all real operational constraints that includes the realistic decision space. The
objective of the optimization is to minimize the amount of water value ex-
pended. The water in the reservoirs, and in between them, have value based
on the production potential of the rest of the river. The difference between
the simulated and optimized results in the model world is assumed to reflect
the difference in reality as well. This deviation from the optimal efficiency is
then the quality metrics whose development over time could be studied. To
sum up, the procedure consists of the following phases:

1. Choose the optimization period from the history

2. Simulate the model with the actual (measured) discharges, including
sufficient length of data before and after the horizon. Adjust the model
world to correspond the real world in the beginning of the optimization
horizon.

3. Minimize the use of resources during the ex post horizon subject to the
real operational constraints:

• The total simulated production of the cascade must be satisfied.

• The total amount of water discharged from the strategic reservoirs
in reality must remain the same during the optimization horizon.

• Only such turbines that were available in reality can be used in
the optimization. Likewise, the turbines that must not be stopped
cannot be stopped in the optimization.

• The tributary water flows into the reservoirs as observed.

• The sold spinning reserves must be maintained

• The water discharged before the beginning of the optimization
horizon is taken into account during the horizon, thus reflecting

6Similar methodology was applied ad-hoc during the transfer process of operation
KEJO in 2013. The credit for the idea belongs to the team formed by experts repre-
senting the shareholders of the company.
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the real decision-making situation.

• The optimized schedule should enable the production after the
horizon ends.

• The optimized schedule must respect all the real environmental
constraints, such as the levels of the reservoirs and the changes of
flows.

4. Comparison of the simulated and the optimized results.

The methodology remains the same if the ex post optimization is conducted
through every time point. Then the period of the first phase is a moving
window and the other phases remain the same for each case.

2.1.5 The river and production model applied

The ex post optimization can be implemented with any sufficiently good river
model. To provide a concrete example, this section shortly presents a river
model suitable for that purpose.

The modelled period consists of timesteps tk, k = 1, . . . , N with even disc-
retation, or d = tk + 1 − tk is constant for all k = 1, . . . , N − 1. Then, the
length of the period is L = N · d. The most important sub-models are the
plant interconnection model, the tail-water model and the generating unit
model.

There are I hydro-power plants in the cascade and the water from the plant
i flows to the single plant Next(i). Incoming water to the plant i may origin
from several plants. Also, tributary water from the catchment area flows into
the reservoirs, adding stochasticity to the system. The water volumes in the
reservoirs are transformed into water levels using a reservoir function Ci(·).
The water flow from i arrives to the next plant Next(i) faster if the river
course is full of water, because the cross-sectional area of the stream increases.
The arriving flow is depicted by the delay distribution Di(tk) = λi(tk) ·P F

i +
(1−λi(tk)) ·PE

i , where P F
i ∈ Rbi is the distribution in case the river is "full"

and PE
i ∈ Rbi in case the river is "empty". Use of the two distributions is

computationally quite expensive and in cases use of only one distribution is
recommended. The weighing factor is defined as λi(tk) := 1

bi

∑bi
s=1 ui(tk−bi+s)

and scaled into [0, 1]. In other words, the delay distribution of a moment
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Figure 7: The water discharged flows to the next plant according to the delay
distribution.

depends on the past discharges whose length is determined by the length of
the distributions, bi. In Figure 7, one example is presented with bi = 10. In
the upper sub-figure, λi ≈ 0.5 and in the lower one it is slightly increasing
from the initial level of about zero.

The tail-water level of the plant i depends, with exceptions, on the next
plant’s upper reservoir level, and on the occurred discharges of the plant.
One way is to model the tail-water using an autoregressive model with ex-
ternal variables (ARX). One external parameter could be the plant total
discharge. The main advantage of ARX is that the parameter values can
be estimated effectively from the close past using the standard least square
fit method. Hence, the model automatically adapts to the current situation.
It is possible to choose between different ARX-models that have different
numbers of AR- and X-parameters so that the model minimizes the error
between modelled and measured tail-water levels with minimum number of
parameters. In the very model, the selection is based on the Akaike’s infor-
mation criteria. Another way is to model the tail-water with partially linear
fit as a function of plant discharge. Both methods encounter problems with
tail-waters that incorporate so called hysteresis-phenomenon, as illustrated
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Figure 8: An example of the hysteresis-phenomenon in the tail-water of a
plant. In the lower figure, the bars represent the discharge and their scale is
the right y-axis.

in Figure 8. Because of the phenomenon, the tail-water levels with the same
discharge remarkably differs during the day. The deviation of 0, 6 meters in
the head of about 20 meters causes approximately 3% error in the production
rate if the model does not take into account the hysteresis.

Each plant i has Ji turbines and each turbine has its individual technical
properties such as maximum discharge, waterway losses, efficiency table ηij
(as represented in Figure 4), maximum rated production and amounts of
different technical reserves.

The decision variables are discharges and the number of units on. At time tk,
the discharge through plant i is sum of the turbine discharges and spillage,
qi(tk). The turbine j of the plant i is being utilized at time tk if Sij(tk) =
1, j = 1, . . . , Ji. In this model, this decision is made manually due to the
original purpose of the model. The decision variable matrix, or the schedule,
is formulated in the equation 7.
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U(Q(t),S(t)) = [u(q(t0),S(t0)), . . . ,u(q(tN),S(tN)] ∈ RI×N

u(q(t),S(t)) = [u1(q1(t), S1(t)), . . . , uI(qI(t), SI(t))]
T ∈ RI (7)

The explicit outputs are the production rate and the frequency controlled
reserves over the horizon. Furthermore, the information of the regulating
capacity rate is valuable for trading and is thus an implicit output of the
model. Obviously, the outputs include also the water level estimates.

The optimization is based on an evolutionary heuristic algorithm, inspired
by bee-algorithms presented by Pham et al. [2006] and Gavrilas [2010]. The
main idea of the algorithm is to have numerous solutions that evolve based
on mutual comparisons. The comparison is based on the Pareto-optimality
of the objective functions fa(U).The value function vi(fi(x)) transforms the
different objective functions into a commensurable value scale. The objective
of the optimization is then to minimize the weighted sum of the different value
functions, expressed in the equation 8. The best solutions, including Pareto-
efficient solutions, continue to the next iteration loop with variations. The
objective functions must be strictly decreasing so that the additive objective
function results Pareto-optimal solutions, as discussed in Chapter 2.1.2.

V : Rm → R, V (f(x)) =
m∑
i=1

wivi(fi(x)) ∈ [0, 1] (8)

In practice, the objective functions are the energy value of water in the reser-
voir, the energy of moving water and some other functions that correspond
the values of the producer. In addition, a constraint can be implemented as
an objective. For example, the deviations from the required spinning reserves
can be modelled as "fines".

The model can deal with multiple objectives but the problem is that as
the number of objectives increases, the number of Pareto-optimal solutions
increases as well. Then, it is possible that the heuristic method does not
know how to evolve. Also, as the dynamic decision space is not necessarily
convex, there may exist local optima where the population gathers. Evading
the local optima requires good global evolution rules, but their suitability or
performance cannot be guaranteed.
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2.1.6 Comparison of the results: A case example

This section demonstrates the ex post methodology with a concrete example
using the river model presented in Section 2.1.5. The period is selected from
August 2014. Wider statistics will not be provided, and any conclusions
regarding the optimality must not be made based on this single case study.
First, the optimized and simulated results are compared shortly. Next, the
model is validated. The feasibility of the results is evaluated in the end.

The results of the case study are presented in Table 1. The optimization
method discharged the same amount of water from the strategic reservoirs
as in reality, but it did not satisfy perfectly the simulated total production.
The error (-13 MWh) was taken into account in the benefit comparison.
Compared to the simulated schedule, the ex post optimized one spared about
374 + (-60) + (-13) = 301 MWh energy, stored in the reservoirs or flowing
between them. That made about 1,4 % of the total simulated production.

Table 1: Results of the case example, partly shown as differences.
Simulated Optimized

Energy Produced [MWh] 20944 20931 (-13)
Energy left (in reservoirs) [MWh] 0 374
Energy left (flowing water) [MWh] 0 -60
Strategic reservoir discharge [106 m3] 45,187 45,187

The simulated and measured production of the whole cascade is illustrated in
Figure 9. The error of the sum production varied hourly between −5 · · ·+ 25
MW. The measured production during the horizon was 20426 MWh, implying
that the model produced 518 MWh (2,5%) more than measured. The sum
of the hourly plant-wise errors (absolute value) varied between 10 – 25 MW,
meaning that the relative error is more than 5% of the total production
during times of lower production. During the times of higher production,
there are times when the plant-wise errors summed up to the total error.
In other words, all the plant-wise errors were systematically into the same
direction. The absolute errors of the simulated and measured water levels,
both the upper reservoir and the tail-water, for few plants are presented in
Figure 10. The absolute errors of the reservoirs were less than 10 cm and
those of the tail-waters only partly exceeded 20 cm.
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Figure 9: The total production of the cascade for the period of the case
example. The dashed error line represents difference between cascade sums
(simulated - reality) and the solid error line the sum of absolute values of
plant-wise errors.

The optimized schedule, along with the simulated one, for three plants is
presented in Figure 11. The first plant controls the strategic reservoir and
therefore the water levels, or storage volume, must equal in the end of the
period. The simulated discharges broke the regulation rule in the third plant,
which did not happen in reality. The minima water levels of the reservoirs
were less in the optimized results; in the second about 12 cm and in the
third about 20 cm. Also, the high water levels of the last two hours might
cause problems just after the optimization period. On the other hand, the
optimized schedule respected all the operational constraints and requirements
and hence the schedule could not be justified as non-feasible. The number
of the turbine start-ups was bit smaller in the optimized schedule, which is
a positive aspect for it.

To sum up, the optimized results spared energy about 150 MWh per day in
the model world. With the energy prices of that time, the loss would have
been worth of roughly e6000 per day.
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Figure 10: Absolute errors of the water level models for four plants. The
nominal geodetic heads of the plants are between 11 – 21 meters.

2.2 Operative buffer

A new measure of operational quality, operative buffer, originates from the
discussions related to the risk of the flowing water, and how different op-
erators consider the suitable water levels in different ways. The operative
buffer is defined as time it takes to fill the reservoir in case the plant dis-
charge would go to zero. The buffer measures fullness of the reservoir with
respect to the incoming water and its unit is time. Too long a buffer means
that the reservoir is too empty and, respectively, too short a buffer that it
is too full. A long buffer implies a loss of energy as the head of the plant
could be higher, and a restricted capacity of up-regulation (increasing power
rate output). On the other hand, a short buffer implies a restricted down-
regulation and a higher risk of undesired spill discharge. The suitable range
can be defined based on the relevant plant properties and, for example, on
the distance from the nearest maintenance unit.

The calculation of the buffer is straightforward: until the reservoir of a plant
is full, the consequent discharges of that plant are returned to the reser-
voir. The buffer is the time required to violate the reservoir constraint. The
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Figure 11: The simulated and optimized schedules and modelled water levels
for three plants, presenting key findings on the optimized results. The up-
permost figure depicts the strategic plant and therefore the water levels must
equal in the end of the horizon. The water level of the plant in the middle
increases rapidly in the end of the horizon. The simulated production in the
lowest figure violates the regulation limit, which did not happen in reality.
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calculation is repeated for each sampling time step and for each plant.

More formally, let Bi
O(tk) denote operative buffer of the plant i, W i

U(tk)
observed water level of the corresponding reservoir, V i(tk) current volume
of water and Qi(tk) corresponding plant discharge at time point tk, k =
1, 2, . . . , NT . The sampling is uniform, namely tk+1 = tk+∆t∀k = 1, 2, . . . , NT .
Also, the water level constraint Ci

U(t), the function F i
WU(WY ,∆V ) for esti-

mating water level as function of initial water levelWY and additional volume
V are known. Then, the algorithm for calculating the operative buffer at time
tk is presented below. Its complexity for one period of length NT is of order
O(NT ), assuming NT is much greater than s, where s denotes the maximum
buffer length (in consequent time steps).

s = 0 % Number of consequent time step
v = 0 % volume of the returned water

while Ŵ i
U(tk+s) < Ci

U(tk+s)
s = s+ 1 % time step increment
v = v +

∫ tk+s

t=tk+s−1
Qi(t)dt % return water

Ŵ i
U(tk+s) = F i

WU(W i
U(tk+s), v) % estimated level

end

Bi
O(tk) = s ·∆t % Buffer length

% is the number of time steps
% multiplied by the length of one step

% Then , continue to the next time step tk+1...

Figure 12 demonstrates the operative buffers for a plant data covering three
summer periods. The length of the buffer is mostly over 50 minutes and most
often is more than two hours. The shape of the buffers reflects the dynamics
of the operation: the discharge of the plant is increased when the discharged
water from the upper plant comes available. Waiting for that causes the
shorter buffer in the morning.
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Figure 12: The operative buffers visualized and layered day-on-day for a
plant reservoir. The reference data is from the years 2012 – 2014 and the red
data is the corresponding period of 2015.

2.3 Evaluation

The operative buffer has many straight advantages. Firstly, this could facil-
itate the operative decision-making as one operator typically controls mul-
tiple reservoirs. Secondly, the managers of the operation can determine the
suitable buffer limits so that the risk of the spillage is independent of the
operators’ risk profiles. Thirdly, calculated from the historical values, the
buffer can be utilized for revealing systematic errors of the model used in
optimization.

In practice, the reservoir is often modelled simply based on the maximum
volume and the corresponding area but the bottom shape is not evaluated.
The effect of the bottom shape can often be neglected as the relative change
of reservoir areas with different water levels is small. More significantly,
this method does not take into account the waving effects in the reservoir.
Therefore, the modelled reservoir level might differ remarkably from the re-
ality, implying wrong timing of the constraint violation. On the other hand,
one remarkable source of error is eliminated because the calculation for his-
torical values does not need the delay model. The water from the upper
plant(s) is already reflected in the reservoir level. Calculating the buffer of
the modelled results, for instance of the planned schedule, incorporates the
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errors of the delay model as well.

The ex post optimized schedule expended 150 MWh (1,4 %) less net potential
energy than in the reality. The same amount of the electricity was produced,
thus implying improvement in the efficiency. The order of relative magnitude
was less than in the results presented by Zheng et al. [2013]. The main
reason for that difference might be that the hydrological and price-related
uncertainties regarding the whole year are much more significant than those
of the two following days. One of the main conclusions of Zheng et al. [2013]
was that the accuracy of different forecasts are of high economic importance
to hydro-power companies.

The weaknesses of the heuristic method were revealed clearly in this case
study. The simulated total production was not exactly satisfied, though
the error is negligible (less than 0,1%) and could be taken into account in
the comparison. Furthermore, the optimality or Pareto-optimality of the
schedule cannot be guaranteed.

The key assumption of the methodology is that the deviation from the opti-
mal efficiency in the model world would be preserved in the real world. But,
to what extent does the key assumption hold? If the model and the method-
ology were perfect, then the assumption would hold. There are, however,
many sources of errors in the methodology.

The primary sources of systematic errors are the production model and the
river model. The production model includes for example the efficiency tables
and all the relevant technical parameters of the generating units. The river
model consisted of the plant interconnection model, tail-water models and
the plant interconnection model. In the case example presented, the total
errors of the model (2,5%) were greater than the gap to the optimal efficiency
(1,4%).

The secondary sources of systematic errors relate to the ex post methodology
itself. In the procedure proposed, it was ensured that the decision space
in the ex post-situation must correspond the real situation. It, of course,
includes realistic turbine availability but also that the optimization period is
only a sub-period of the simulated one. Then, the water from the simulated
past is rolling downwards during the optimization horizon. So, the decisions
made before the optimization period restrict the decision space during it.
Also, as the water is already rolling downwards, the initial water levels of
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the optimization horizon are aligned with the measurements – thus reducing
model errors.

The point being is whether the errors of the model might favor, or alterna-
tively disfavor, the optimization. In Figure 13 the reservoir level is higher in
the model world, thus enabling more flexible use during the optimization. If
the optimized results could be transformed to reality, it might appear that
the optimal schedule is not feasible, or the gap is of different size. Based on
that simple and provocative example, the gap is not necessarily preservable
in the real world.

The problem illustrated in Figure 13 is similar as in our case example (the
lowest sub-figure in Figure 11), where the simulated water level violated the
regulation limits (did not happen in reality). In the optimized results, the
water level reaches the minimum at the same time. Did that enable the
improvement?

In theory, it might be possible to cluster all the identified errors into two
groups: "favoring the optimization" and "disfavoring the optimization". If
the groups are not in balance, then the results should be given less weight. In
practice, can we be sure that all the errors are identified or their magnitudes
evaluated correctly? Also, the dynamics of the river makes that question
even more difficult. This question is not discussed further in this thesis.
Until that problem is reliably solved, the procedure cannot be automatized
and the feasibility of the results must be studied separately case by case.
This declines the practical value of the methodology. For instance, is the
selection of the samples justified?

The methodology can be used to reveal weaknesses or strengths of the river
model or the actions conducted. They must be taken into account by both the
operators and the developers of the model. In all, the methodology is suitable
to quality analysis, though the results must be considered in accordance with
the weaknesses of the methodology.

More broadly, the optimality as a whole is more relevant from the standing
point of the shareholders. All the value streams must be considered. The
same resource is part of larger portfolios and the energy is offered to many
markets, or consumed. The value distributions of the electricity markets are
quite skew, and therefore the assumption of the equal probability distribu-
tions does not hold (see page 13 and the figure 6), which was the necessary

27



Figure 13: A conceptual example of a problem with the ex post methodology.
The lines are water levels (left y-axis) and the blue bars discharges (right y-
axis). The red lines are regulating limits of the reservoir water level, the
upper blue lines depict the reservoir water level and the lower ones the tail-
water level. The x-axis depicts consecutive time steps. The columns depict
real and model world and the rows measured and optimized results. The
optimized schedule is not feasible in reality as it would cause a violation of
the regulation limit.
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condition for the ex ante optimum to be the ex post optimum. As the as-
sumption does not hold, should the ex post optimum be even expected? Is it
relevant to separate this ex post methodology, measuring only the efficiency
of the production, from the optimality of market actions? Those actions,
or, preparing to them might, firstly, explain the deviations from the optimal
efficiency and, most importantly, be more valuable than the losses in the ef-
ficiency. If so, the ex post optimal efficiency does not imply ex post optimal
economic value, and thus it would not be a holistic measure of optimality.
As the counter-factual outcome does not exist, that problem is difficult to
tackle. However, it is always desirable to produce the actual output with
higher efficiency as long as it adds value to the shareholders but it should
not direct the actions in the first place. In addition, the existence of this
kind of methodology forms a persisting incentive for the operators to focus
on their performance and for the developers to continuously improve the river
and the optimization model.
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3 In search for typical

Before the river Kemijoki was harnessed, its flow changed significantly be-
tween seasons [Linkola, 1967]. Even though the river basin and the catchment
area have remained the same, the river is now constructed and utilized for
power production. As a result, the river course is maintained full whole the
year. However, the within-day changes of the flows are larger than at its
natural state. Due to its technical properties, the hydro-power production is
suitable for balancing the electricity system – the production and the con-
sumption must equal in the grid all the time. Up to these days, the daily
production profile has followed the rhythm of natural life – electricity con-
sumption is higher during day-time as shown in Figure 2. The behaviour
of the river has possessed a clear daily rhythm, as exemplified in Figure 14
with a sample of daily reservoir water level curves. Also, the annual flood
determines the annual rhythm. In all, these clear and natural rhythms leads
us study the data that is splitted into days or years.

Figure 14: Daily water level observations (N = 266) presented. The 1×∞-
dimensional curves have clear daily structure that leads us to study it daily-
wise.

An underlying assumption behind the approach is that to the other users,
both the professional and the recreational ones, it is essential that the be-
haviour of the river is predictable, or typical. For example, unpredictable
changes of the flows might transport the nets of the fishermen. Also, the
changes of the flows are reflected directly in the water levels that might af-
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fect the recreational users.

In future, the typical rhythm may change. Firstly, the transition of the energy
production towards the renewables may raise the amount of intermittent
production, which requires more flexibility from the system.7 That, on the
contrary, might add value for the actors that can balance the system. The
production of hydro-power is among them, and its timing may diverge from
the current typical. From the wider perspective, the annual rhythm may
change as well. On that subject, Veijalainen [2012] concludes that the winter
discharges may increase, the spring floods distribute more in time and the
variation between dry and wet periods may become more remarkable.

Functional Data Analysis (FDA) refers to the field of mathematical statistics
in which observations are considered as functions instead of points. Ramsay
and Silverman [2002] provides the basic principles related to functional fit-
ting and statistical analysis. Also, they present a wide range of application
areas from weather curves to human growth curves and from economics to
recognition of hand-writing. In general, the functions are multivariate and
the time does not have any special role among other dimensions. However,
quite often the time is the baseline dimension in the applications. For ex-
ample, daily weather can be studied by observing many variables such as
temperature, humidity and wind during the day. Then, the sample consists
of multiple days. Hubert et al. [2012] and Claeskens et al. [2014] capsulize
clearly the fundamental questions of interest of FDA: the estimation of the
central tendency of the curves, the estimation of the variability among the
observations, the detection of outlying curves and classification or cluster-
ing of the observations. This thesis focuses on the first two objectives. The
findings form a basement for later studies on the last two objectives.

How to define the most typical functional datum? A conceptual example of
this problem is shown in Figure 15. Is the curve in the middle "the most
typical curve"? It is the closest to both the total and the time-wise mean,
and is the median observation at each time point. However, clearly it is an
exceptional datum as it has an exceptional characteristic, the rapid varia-
tion. Common measures of centrality, or typicality, are average or median
calculated coordinate-wise. More sophisticated version is the functional me-
dian discussed in the chapter 3.3.4. Another family of solutions is provided

7For example the Finnish TSO Fingrid discusses this topic in its publication "Electricity
markets needs fixing - what can we do?", published 17th May 2016.
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Figure 15: Five simulated functional univariate datum. Note that this is a
conceptual example and a statistical analysis cannot be based on this few
observations in theory or in reality.

by depth functions that measure centrality of multivariate observations and
provide ordering of the curves based on that measure.

For consistency, the notations are agreed upon here. Let C(I) be a complete
normed space of continuous functions defined on the compact interval I. Let
Y(t) denote a s-variate stochastic process with distribution P (t), or with
the cumulative distribution function FY . In general terms, the data is s ×
∞-dimensional, as the time is a continuous dimension. Realizations of the
stochastic process are paths in C(I). Let Yi(tj) denote the ith s-dimensional
observation at time tj ∈ I of the sample. Observing the process T times at
I produces one datum (curve, observation):

Yi = [Yi(t1),Yi(t2), . . . ,Yi(tT )] (9)

Then, we will work on a sample of N such curves:

Y := {Yi}Ni=1 (10)

Using this notation, the time-wise calculated average is calculated as below
(11). It is a common measure of functional centrality. It can be used for
example for functional ANOVA, discussed by Cuevas et al. [2004], in which
the test statistic is based on the group means.
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Ŷ := [
1

N

N∑
i=1

Yi(t1),
1

N

N∑
i=1

Yi(t2), . . . ,
1

N

N∑
i=1

Yi(tT )] (11)

The aim of this chapter is to define measures of normality for different time-
varying quantities. In this context, the data consists of day-layered water
level or discharge measurements. An example of such data is given in Fig-
ure 14. The problem of typicality is approached from the following three
directions. The first one converts the curves into points. The second ap-
plies Functional Data Analysis (FDA) to study the problem. In the end,
we combine the two with the concept of Pareto-optimality and propose a
new methodology for finding the most typical observations in multi-variate
setting.

3.1 Analyzing functional data using point values

3.1.1 Descriptive statistics

One can get an overview of a process or functional data via descriptive statis-
tics. For example trends, averages, ranges, extreme values or variation mea-
sures can be used. Two real-data samples of water level measurements are de-
picted in Figure 16 using histograms and box-whiskers plots of daily ranges,
daily means and daily extreme values. The data set Summer consists of
workdays from three summers (266 days) and the set Winter of one winter
time (65 days). According to the visualization, the water level minimum is
lower and the range higher in winter time. Also, daily range of discharge
seems to be slightly larger in winter time as well. The daily mean discharges
are approximately the same during the both seasons but in winter time they
distribute more densely.

3.1.2 Depth functions for point-wise data

Typical is not unambiguous to agree about even in simple one-dimensional
cases. For instance, salary distributions may be strongly skewed. So, in prac-
tical applications the distributions do not necessarily satisfy (multi)normality
assumptions. In such cases, even a few outliers may significantly influence
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Figure 16: Comparison of summer (N = 266) and winter (N = 65) mea-
surements with histograms and boxplots. Water level 0 m corresponds to
the maximum level of the reservoir and the discharge is scaled into interval
[0, 1]. Box and whiskers plots are generated using the Matlab-code provided
by Jonathan Lansey.
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the centre, or the location, of the sample. That phenomenon is underlined if
the sample sizes are small. For instance Oja [2010] considers several sample
location problem using standard MANOVA-method but also developing new
robust non-parametric test statistics. One of them is based on a spatial rank
function that ranks d-variate points inside the p-sphere. Even though the
test statistics are not affine invariant, they are location and scalar invariant,
which is often sufficient in practice.

Another way to address the problem is the depth functions that provide an
ordering from the most central object, or the deepest observation, to the
least central one. Historically, the concept of depth was first discussed by
Tukey [1975] to generalize statistical ranks to multivariate setting. The pro-
posed half-space depth, or Tukey depth of a multivariate point x ∈ Rd is the
minimum probability mass P of any closed halfspace H containing x, or,
inf{P (H)|x ∈ H} [Zuo and Serfling, 2000, p. 461]. The equivalent formu-
lation of [Claeskens et al., 2014, p. 8], given in the equation 12 is straight-
forward to transform to sample version. An example of a bivariate data set
and its Tukey depth values is shown in Figure 17. Half-space depth has
been studied widely and it plays, or its variations play, crucial role in many
functional depth definitions as well. Rousseeuw and Ruts [1996] provide an
efficient (O(nlogn)) algorithm for calculating Tukey-depth.

HD(x, FX ) := inf
u∈Rk,||u||=1

P (uTX ≥ uTx) (12)

Zuo and Serfling [2000] proposes general prerequisites for any depth function,
provided in the definition 3.1. The first desired property means that the
coordinate system used or scaling must not affect depth ordering. The second
means that if the centre can be uniquely defined, then the depth should get
its maximum value at that centre. The third in turn means that the depth
should decrease monotonically when moving away from the deepest point
to any direction and the fourth that the depth should approach zero when
approaching infinite distance from the deepest point. These all are important
properties but a depth function can be feasible even if some of these are not
satisfied. More desired properties, including symmetry around the deepest
point, are discussed for example in Serfling [2006].
Definition 3.1. Statistical depth function in Rd:
Given a point x ∈ Rd, a class of distributions F of Rd and a distribution of a

35



Figure 17: Tukey depths of a random two-dimensional data set, N = 15,
evaluated. Next to each data point is given the depth rank and the depth
value is the rank divided by N to give the probability mass. In this case only
one point has the maximum depth, but in general that does not hold. For
one point the evaluation is illustrated with lines and arrows. For that point
it is not possible to make half-space division such that there would be less
than 3 data points in the other half-space, yielding a half-space depth value
3.
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general random vector X FX whose deepest point is the centre θ. Then, the
bounded and non-negative mapping D : Rd × F → R1 is a statistical depth
function if it satisfies the following properties:

1. Affine invariance: D(Ax + b;FAX+b) = D(x;FX) holds for any ran-
dom vector X ∈ Rd, for any non-singular d× d-matrix A and for any
d-vector b.

2. Maximality at the centre: D(θ;F ) = supx∈RdD(x;F ).

3. Monotonicity relative to the deepest point: D(x;F ) < D(θ+α(x−θ);F )
for α ∈ (0, 1].

4. Vanishing at infinity: D(x;F )→∞ as ||x|| → ∞.

3.1.3 Bagplot

A bagplot is a bivariate extension of the boxplot. It consists of a convex hull,
or a bag, that contains 50% of the observations and of a fence that separates
outliers. Rousseeuw et al. [1999] define the bagplot for bivariate point-wise
data using the half-space depth (see the equation 12). An example of half-
space depth based bagplot on the historical flood data is shown in Figure
18. The selected variables for the bagplot are the magnitude and timing of
the flood peak. Other important variables could be the starting time and
the volume of the flood. The figure also illustrates the intersection of the
boxplots of the marginal distributions. Hyndman and Shang [2012] extends
the bivariate bagplot to the functional setup.

3.2 Time-warping

In the context of time based data, there may exist variation in amplitude or
phase of the data. Time-warping, or registration, is the phase of making the
observations comparable by manipulating dimension scales. Ramsay and Sil-
verman [2002][p.102] define the time-warping formally by assuming a sample
of N observation functions xi(t), t ∈ [0, Ti], i = 1, 2, . . . , N . These obser-
vations are transformed into a common interval [0, T0] using time warping
functions :
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Figure 18: The historical discharge data from the Kemijärvi lake observed in
1964 – 2015. The lake is regulated and therefore the discharge is condensed
at the plant nominal discharge of about 500 m3/s. The x-axis is the ordinal
number of the day (1st May = 120, leap years 1st May = 121). The red
dashed line is the time-wise mean (eq. 11) that does not represent aver-
age flood. The diamonds in the lower figure represent the peak discharge
of that year. Both the bag and the fence of the bagplot are drawn. The
intersection of the marginal distributions boxplots is shown as dashed black
box. The data is openly accessible at http://www.syke.fi/en-us/Open_
information (SYKE, Finnish Environmental Institution). The Matlab-
library for calculating robust statistics (including the bagplot applied here) is
maintained at http://wis.kuleuven.be/stat/robust/LIBRA/LIBRA-home
by the research group on robust statistics of the KU Leuven. The computa-
tion is described by Rousseeuw et al. [1999] and its variation by Hubert and
Van der Veeken [2008].
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Figure 19: A conceptual example of time-warping. The time-wise mean is
shown with the dashed line. The upper figure shows the original data as
function of time. The time is warped in the lower one to align the peak
magnitudes of the observations.

hi(t) ∈ [0, Ti], t ∈ [0, T0]

For any time warping function holds strict monotonicity h(t1) > h(t2)⇔ t1 >
t2, which leads to invertibility h−1

i (h(t)) = t, or, one-to-one correspondence
between the time scales. Mathematically h(t) > t and h(t) < t correspond to
the process "running slow" and "running fast", respectively. In the method-
ology described above, only the starting and ending points were fixed. Some
more "landmarks" could be defined, and the registration could be imple-
mented even continuously. This, however, requires a satisfactory measure of
similarity with respect to the context. A conceptual example is shown in Fig-
ure 19 where the non-aligned observations are aligned according to the peak
amplitude. This makes the time-wise calculated mean more representative of
the data. Ramsay and Silverman [2002] also propose that these time-warped
functions themselves are interesting subjects of study. For example, see Fig-
ure 20 presenting some time warping functions of the Berkeley growth data
set8. Individuals seem to mature at different ages, which is normal among
human beings. Note that the time t can be plotted against the difference
h(t)− t (time deformation function) to demonstrate the amount of warping
[Ramsay and Silverman, 2002, p.108].

8Berkeley growth data set is open data and has become somewhat standard in FDA as
the methodologies are often illustrated and tested with it.
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Figure 20: Two "normal" time warping functions that are close to the diag-
onal and two presenting early and late maturer of the Berkeley growth data.
One observation (dashed line) turn from late maturer to early maturer before
his/her early teenage years. The data is provided by Ramsay and Silverman
[2002] as a web-appendix to the book.

3.3 Statistical functional depth functions

Nieto-Reyes and Battey [2016] provides the formal definition of statistical
functional depth, given in Definition 3.2. The three first properties remain
somewhat similar to those of the point-wise case (see Definition 3.1 for ref-
erence) but the two last properties are inevitable due to the functional set-
ting. The first desired property is distance invariance which ensures that
the depth ordering is maintained in any scaling that preserves distance up
to non-zero scaling factor. The second property requires that the deepest
observation should locate at a unique centre of symmetry. The problem with
it is that existence of such unique centre is not clear. Therefore, the second
requirement is altered so that the depth function should satisfy that prop-
erty for well-known Gaussian process that is a zero-mean, stationary and
almost surely continuous. The third and the fourth properties are the same
as for a cumulative distribution function. The fifth property is more in-depth
discussed in the referred source. Briefly, it aims to take into account such
sub-sets of the interval I that exhibit only little variability within a sample
giving less weight to those sub-intervals in the final depth value.
Definition 3.2. Statistical functional depth function:
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Let (Ω,A, P ) denote probability space, P the space of all probability measures
on Ω and | · |p a p-norm. Then, the (bounded and non-negative) mapping
D : Ω × F → R1 is a statistical functional depth function if it satisfies the
following properties:

1. Distance invariance: D(f(Y);Pf(Y)) = D(Y;PY) holds for any random
vector Y ∈ Ω and for any f : Ω → Ω with the condition of |f(Y∗) −
f(Y)|p = af · |Y∗ −Y|p, given that af 6= 0.

2. Maximality at the centre: For any P ∈ P having a unique centre of
symmetry θ ∈ Ω with respect to some notion of functional symmetry,
D(θ, P ) = supY∈Ω D(Y, P ).

3. Strictly decreasing with respect to the deepest point

4. Upper semi-continuity in Y: For all Y ∈ Ω and for all ε > 0 there
exists a δ > 0 such that supY∗ : |Y∗−Y|p<δD(Y∗, P ) <= D(Y, P ) + ε

5. Receptivity to convex hull width across the domain

6. Continuity in P .

One important property of any estimator is its robustness against outliers.
Breakdown point is the maximum fraction of arbitrary contaminated obser-
vations that the estimator tolerates without biases. For sample mean, for
instance, the breakdown point is zero as one infinitely large observation bi-
ases the estimate. For point-wise Lp-depth functions Zuo [2004] introduces
a finite sample breakdown point in order to study their global robustness.
Functional breakdown point could be defined, for example, based on time-
wise mean added by a big number. If that breaks the centrality estimator,
then the breakdown point would be zero.

3.3.1 Minimum within-curves-distance depth function

Zuo and Serfling [2000] and Zuo [2004] discuss depth functions that are based
on Lp-norms. In the equation 3.3.1, the deepest curve minimizes the sum of
time-wise Lp-distances to all the other curves. Let | · |p denote Lp-norm of
d-vector.
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LDp(Y) = arg min
i

N∑
s=1

T∑
j=1

|Yj
i −Yj

s|p (13)

3.3.2 Multivariate functional depth function

Hubert et al. [2012] proposes a depth function called multivariate functional
halfspace depth function (MFHD), given in the equation 14. An important
block of that equation is the sample version of the half-space depth of the
equation 15, where #(·) counts the number of set members. Note that the
extra time point in the weight function must be defined somehow, for example
as tT+1 = tT + 0.5(tT − tT−1). Claeskens et al. [2014] provide proofs that
MFHD satisfies similar properties than those of Definition 3.1. All the proofs
are based on that Tukey-depth do satisfy those properties. The authors do
not discuss explicitly the properties of Definition 3.2.

MFHDN,T (Yi, α) =
T∑
j=1

wα,N(tj)HD
j
N(Yj

i ) (14)

HDj
N(y) =

1

N
min

u,||u||=1
#{YN : uTYj

i ≥ uTy} (15)

MFHD gives more weight to time points where the variation is more signif-
icant. The weight function wα,N (eq. 16) takes into account the amplitude
variability at each time by considering volume of the convex hull of the depth
region (vol). The depth region at level α for any depth function DFX

is de-
fined in the equation 17.

wα,N(tj) =
(tj+1 − tj)vol(Dα(F jY )∑T
j=1(tj+1 − tj)vol(Dα(F jY )

(16)

Dα(FX ) = {x ∈ Rk : D(x;FX ) ≥ α} (17)
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Figure 21: Hypograph and epigraph of a univariate function x(t) (in this
case Brownian motion).

3.3.3 Half-region depth

López-Pintado and Romo [2011] proposes computationally fast depth func-
tion that can be easily applied to multivariate data. The half-region depth
HRD is based on the concepts hypograph and epigraph of a function y(t).
The concepts are defined in the equation 18 and visualized in Figure 21.
Note that their intersection is the function itself. The authors of the article
discuss the general consistency requirements of Definition 3.1 but not those
of Definition 3.2.

hyp(x) = {(t, y) : y ≤ x(t), t ∈ I} (18)
epi(x) = {(t, y) : y ≥ x(t), t ∈ I} (19)

The sample half-region depth HRD of x ∈ C(I) with respect to the whole
sample Y is then defined below:
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HRDi(x) =
1

N
min{

N∑
i=1

IND(Yi ≤ x),
N∑
i=1

IND(Yi ≥ x)} (20)

where IND(·) denotes indicator function. IND(Yi ≥ x) gets value one if
and only if Yi belongs to the epigraph of x ∈ C(I) and zero in other cases.
Kuelbs and Zinn [2015] discuss problems related to the half-region depth,
namely that the depth might be zero-degenerate for sample whose all ele-
ments cross-over each other. Problems arise if the observations cross-over,
namely belonging at times to epigraph and at times to hypograph because
for such observation both IND()-functions will give value zero. The HRD
can be modified so that it takes into account the proportion of time that the
stochastic process is greater (superior) or smaller (inferior) than x [López-
Pintado and Romo, 2011, p. 1689]. Its sample version is given in the equa-
tion 21 where SL(Y,x) and IL(Y,x) are the superior and inferior lengths,
respectively and λ{·} denotes Lebesgue-measure9 on Rs. Somewhat simi-
lar and graphically grounded depth functions are band depth and modified
band depth proposed by López-Pintado and Romo [2009] but those are not
discussed further in this thesis.

MHRD(Y,x) = min{SL(Y,x), IL(Y,x)} (21)

SL(Y,x) =
1

Nλ{I}

N∑
i=1

λ{t ∈ I : Yi(t) ≤ x(t)}

IL(Y,x) =
1

Nλ{I}

N∑
i=1

λ{t ∈ I : Yi(t) ≥ x(t)}

3.3.4 Functional median

Gervini [2008] discusses a mean estimator called functional median that is
more robust than the common sample mean. Its sample version for univariate

9Lebesgue-measure is the normal way of measuring subsets of s-dimensional Euclidean
space, like length, area and volume for 1-, 2- and 3-dimensional cases, respectively.
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{Yi}Ni=1 is given in the equation 22, where the norm || · || is common L2-norm
||x|| = (xTx)1/2.

µ̂ = arg min
µ∈R1×T

N∑
i=1

||Yi − µ|| (22)

The sample estimator µ̂ must satisfy the equation 23 with the condition
Yi 6= µ̂ ∀ i = 1, . . . , N .

N∑
i=1

Yi − µ̂
||Yi − µ̂||

= 0 (23)

That prerequisite leads to the fact that the median is a weighted sum of the
observations, provided that wi ≥ 0∀ i and w′w = 1. The equation 24 holds
even if the (23) is not defined.

µ̂ =
N∑
i=1

wiYi (24)

So, the functional median can be calculated if the weight vector is known.
This and the original minimization problem of the equation 22 yields the
new minimization problem (25) with respect to the weight vector. It can be
formulated as the common convex minimization problem (eq. 26) with the
aid of canonical vectors ei (whose only non-zero element i equals one).

min
wTw=1,wi≥0

N∑
i=1

|Yi −
N∑
j=1

wjYj|2 (25)

min
wTw=1,wi≥0

N∑
i=1

((ei −w)TG(ei −w))1/2 (26)

Gervini [2008] provides relevant proofs and the algorithm to solve the opti-
mization problem of the equation (26).
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3.3.5 Pareto-efficient functional depth

Pareto-optimality (discussed in chapter 2.1.2, page 8) can be applied in FDA
as well. In this section, we propose a new method for finding Pareto-efficiently
typical observation among a N-sized sample of s×∞-curves. The three phases
of the method are the following:

1. Define the criterion of typicality and their measures.

2. Measure the data and order (rank) the results.

3. According to the rank scores, find Pareto-efficient observations. They
are, according to the given criteria, the most typical observations.

The first phase is defining typical properties and their measures. In general,
these are identified with the experts of the field. Applicable measures could
be be for example mean, range, changes or variance of the data itself or
of its derivatives. The second phase is ordering the data within all these
measures individually so that the most typical observation gets the extreme
value. For the ordering, one can use for example the spatial rank scores
(mentioned in Section 3.1.2). If so, the ranks from the negative half-sphere
must be transformed into positive one using for example absolute function.
The third phase is finding Pareto-efficient points using these rank scores. The
Pareto-points then pose as typical.

A similar technique could be applied in the functional quality analysis in
general – there are no reasons for the criterion to measure only typicality.
If the criterion measures extreme values, such as "minimize the range of the
acceleration", then the ranking can be omitted. However, if the results are
strongly skewed, some robust measure, such as spatial rank function, could
be used.

3.3.6 Comparison of the depth functions

Nieto-Reyes and Battey [2016] discusses widely certain functional depth func-
tions that have appeared lately in the literature. An interesting point stated
is that the half-region depth (eq. 20) does not satisfy the second (even
altered) property whereas the modified version (eq. 21) do satisfy it. The
properties three and five are not satisfied by any of the depth functions of the
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article. The article, however, does not consider the multivariate half-space
depth (eq. 14) that especially intents to give more weight to sub-sections
of wider convex hull volume. The requirements specified recently by [Nieto-
Reyes and Battey, 2016, p. 64] are not discussed in the former articles on the
subject, though discussion on consistency is provided in each article. That
discussion is excluded from this thesis. We will illustrate the properties and
compare the different depth functions using the real data.

Figures 22 and 24 present raw data and depth functions for cases A and
B. The data of case A is water level measurements of a reservoir and the
case B then controlled variable, discharge, of a generating unit. The depth
functions are multivariate functional half-space depth (MFHD) function, L2-
depth function (LP) and modified half-region depth (MHRD) function. In
the same axes it is drawn the area covered by the T fp -set of the correspond-
ing depth function. The T fp -set is defined as the space below the time-wise
supremum (maximum) and above the time-wise infimum (minimum) of the
first p% deepest observations with respect to the depth function f . The
histograms on the right side of the axis present the distribution of the corre-
sponding depth values.

In Figure 22, the deepest observation with respect to the modified half-region
depth function exceeds the typical daily range of water level (mean 0,2356 m
and median 0,2263 m) with its range of about 0,38 m. The mean itself seems
quite smooth and is affected by non-aligned events in time. Its shape or
range underestimates the variation in reality. Also, the modified half-region
depth has the largest variation as the thirdly deepest observation has a range
of only about 0,08 m. The distribution of the L2-depth function is the most
skewed as the few outlying observations affect the measure a lot.

The property of variation within a depth function is illustrated with the cap-
ture ratio in Figures 23 and 25. The capture ratio at p is defined as the
fraction of data mass belonging to the T fp . In Figures L1 refers to L1- and L2
to L2-depth functions. MHRD captures the measured values fastest in this
case and MFHD differs only slightly from the Lp-depth functions. Interest-
ingly, there are no notable differences between the capture ratio curves of L1

and L2.

In Figure 24 the depth functions do not capture the fundamental rhythm of
the generating unit. The generating unit is shut down in more than 77%
of curves, which makes that property quite typical. However, only L2-depth
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Figure 22: Summer-time water level measurements of a reservoir and three
different depth functions day-layered (N = 266). The histograms depict the
distribution of the depth functions.
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Figure 23: Capture ratios of different depth functions in case A. L1 refers to
L1- and L2 to L2-depth function.

has one shutdown datum among the 5% deepest observations. MFHD gives
more weight to the intervals of wide convex hull. In this case, the value range
does not change remarkably but condensations clearly exist. Furthermore,
none of the depth functions capture the discharge rate of about 150m3/s even
though there are densely observations and could be considered as typical. The
steep slopes in the capture ratios (figure 25) mean that the depth functions
widen their view on typicality at different times, or at different number of
the deepest observations. So, if 10% (the same percentage as in the case
A) of the deepest observations had been taken into account, all the depth
functions would have recognized at least one night-time shutdown and thus
would have captured more of the data mass. The 5% was selected because
then the number of the deepest observations (N = 8) will compare to the
Pareto-efficiently deepest observations, below.

Pareto-efficient depth seems to capture well the fundamental rhythm dis-
cussed above, as illustrated in Figure 26. The normality measures in the
Pareto-methodology are central-ordered spatial ranks of the following crite-
ria. "Typical volume" measures the amount of discharge during the day,
"Typical sum of changes" refers to the total sum of the absolute changes
during the day and "Typical range" the daily range of the discharge (max -
min). The number of Pareto-efficient curves is eight (8) and they might in-
clude some curves that are not among the ten most central ones per criteria.
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Figure 24: Discharges of a generating unit day-layered (N = 166). The
histograms depict the distribution of the depth functions.
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Figure 25: Capture ratios of different depth functions in case B. L1 refers to
L1- and L2 to L2-depth function.

The same number of the deepest observations of the best depth function (L2)
of Case B is illustrated alongside, but its range is not typical and, except for
one curve, the curves seems quite constant.

All the methods can be applied to multi-dimensional setting. In Figure 27, a
bivariate setting with the data of the case A extended with the correspond-
ing discharge data is presented from four perspectives. The applied depth
function is the modified half-region depth (MHRD) function. The deepest
observations evaluated using only univariate data do not exactly match with
the deepest observations that were found using bivariate data. The bivariate
deepest observations form a hull, as visualised in the two lower sub-figures.
One observation seems an outlier, which is actually visible in the upper water
level figure as well.

Pareto-methodology encounters a new problem in multi-dimensional setting
where the typical properties and their measures is even more difficult to
define. As a result the number of criteria easily increases. As a consequence,
the number of the Pareto-efficient points often increases. For example, the
same data as in Figure 27 resulted in 19 Pareto-efficient curves with two
criteria, and 41 with four criteria.
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Figure 26: Three measures of centrality are ranked using spatial rank func-
tion. The ten most typical points per criteria are shown. Pareto-efficient
curves (N = 8, green solid thick lines) may contain observations that are not
highlighted in the other sub-figures. The 5% most L2-deepest curves (N = 8)
from Figure 24 are shown (blue thick dashed lines) alongside. The Pareto-
efficiently deepest observations capture the rhythm of the phenomenon.
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Figure 27: Depth in bivariate setting. In the two uppermost figures the green
lines are the univariately evaluated deepest observations and the blue lines
correspond to multivariate depths.
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3.4 Evaluation

Exploring the phenomenon and its raw-data is essential. If a characteristic
is not observed at this stage, it is possible that it is not taken into account in
the subsequent considerations either. The first image could then affect, for
example, the quality control process. The descriptive statistics offer a wide
range of tools for that, including histograms and such. For example, the
colourmap (see figure 14) clearly visualizes the overall rhythm, even though
it loses the within-day progression of the individual curves. Therefore it is
important to thoroughly study the raw data and its different properties –
with the field experts who could explain the interesting characteristics.

The advantages of the Tukey-depth based bagplot are that it is robust against
outliers, and its shape shows the centre and shape of the non-normal distri-
bution as well, including correlation between the two variates. For example,
the flood peak data of Figure 18 interestingly proposes that the flood peaks
are higher if it occurs between days 140 – 150. The advantage of the inter-
section of the marginal boxplots is that it is easier to implement. As a future
research proposal, the bagplot could be extended to three dimensions, where
its geometric interpretation is still possible, or to N-dimensions.

The time-warping, or lack thereof, might lead to misinterpreting the results.
For example, Figure 18 shows functional progressions of historical flood devel-
opment of the Kemijoki river. The mean is represented with thick red dashed
line but it does not depict correctly typical magnitude. It could be interpreted
that the expected peak occurs at the end of May and has the maximum mag-
nitude of about 900 m3/s. However, the lower figure shows the peaks of the
individual simulations with the diamonds. The majority of the individual
simulations peaks up significantly over the peak shown in the upper figure.
So, the averaging might lead to misinterpretation of the results, which might
affect the preparation for the flood. Time-warping before averaging would
produce more reliable peak magnitude in the mean scenario. However, the
alignment rule requires contextual understanding of the problem and, even
worse, cannot be unambiguously determined. Furthermore, presenting the
data along registered time might bring about unwanted misunderstandings.
In all, time-warping sounds intriguing but might be misleading in practice.
The time-shifting functions themselves might be interesting area of studies
in future.
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All the depth functions discussed had weaknesses. The multivariate half-
space depth (MFHD) was to pay attention at local variability but it clearly
lost condensations of the data mass. It, along with the functional median,
underestimated the daily range as they are stuck to the time-wise mean.
On the other hand, the multivariate half-region depth had suspiciously large
variation in it. In the few cases represented in this thesis, the Pareto-efficient
depth function seemed the most acceptable depth function. In theory, the
Pareto-methodology seems interesting as it inherently fulfills the a priori cri-
teria that is not restricted by any assumptions. More broadly, the methodol-
ogy brings together two independent fields of mathematics, Functional Data
Analysis and Decision theory10. However, the "typicality" itself might be
difficult to define a priori in multi-dimensional settings, which reduces the
theoretical and practical value of the methodology. In practice, two or three
dimensions might be the relevant maximum for the method. The measures
of typicality might have dependencies and could be combined in some way.
That would reduce the number of different criteria.

The fundamental idea of the Pareto-efficient depth methodology is to involve
decision makers in the process of defining relevant typical characteristic and
properties and their measures. As a consequence, the results may feel famil-
iar. In case of depth functions, the complex and black-box measure (depth
function) might be blamed if the results seem distant if compared to one’s
view on normality. Also, if the results do not seem good, one starts seeking
faults in the a-priori definitions instead of the black-box.

10Decision theory widely defined. Pareto-optimality is applied in many fields that in-
corporates decision-making.
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4 Conclusion

This thesis discussed different mathematical methods that could be utilized
in the quality assessment of the hydro-power cascade operation. The first
aspect aimed to assess operational optimality. For it, an ex post optimization
methodology and an operative buffer were proposed and discussed. The aim
of the second aspect was to find typical observation among functional data
observations.

The ex post methodology assesses the deviation from the optimal efficiency
in case there are no uncertainties. The methodology was considered con-
ditionally suitable for the quality assessment. However, the errors of both
the model and the methodology must be taken into account in the assess-
ment. Due to the errors of the mathematical model, the modelled optimum
might not be feasible in reality. The evaluation of the errors requires pro-
found qualitative analysis of the results, which may be fruitful as such, but
restricts usability of the methodology as a continuous performance indicator.
The operative buffer is an interesting measure as it combines the efficiency of
the production with the risk aspect. If the operative buffer is maintained at a
relevant level, then the water management is efficient and does not cause re-
dundant risks. In all, the methodologies form an incentive for the continuous
improvement for both the operators and the developers of the model.

Altogether, the objective of the production is to maximize the net present
value of all the value streams. As the distributions of the different bene-
fits diverge significantly, the ex ante and the ex post optima are not equal.
Hence, the deviation from the optimal efficiency, revealed by the ex post
methodology, might have been well compensated by the benefits gained from
the unpredictable markets. The most significant weakness of the methodol-
ogy is that it only considers the efficiency of the production, not the whole
economic value of it.

The second part of the thesis considered numerous depth functions that mea-
sure typicality of functional data. We proposed a new approach, Pareto-
efficient functional depth, that combines Pareto-optimality and FDA. The
fundamental idea is that the experts of the field, or the decision-makers
themselves, may define a-priori criteria of the typicality. Then, the typical
observations are those that are Pareto-efficient with respect to the given cri-
teria. The method does not valuate the different criteria, whereas all the
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other depth functions discussed assumed some characteristics and gave them
implicitly different weights. Therefore, its results might be more convinc-
ing or persuasive. Still, determining the criteria form a problem in the new
methodology. To sum up, the new approach might guide the discussion into
the typical properties of the phenomenon instead of those of the method,
which may be, in the end, more essential. The method could be studied
further both from the theoretical and the practical point of views.

General problems of the quality assessment are its subjectivity and its quality.
The former may lead to ambiguous measures of the quality and to eternal
discussions around the trade-offs between the criteria. In the multi-objective
situations, such as in the context of this thesis, the problem is highlighted.
The quality of the assessment is poor, if it does not guide the actions into
the desired direction. If the measures are misleading, they might lose their
desired impact and thus the relevance. This problem must be considered in
both the design and the implementation of any quality measure.
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