NBE-E4310 - Biomedical Ultrasonics

EXERCISE 3 (20p)

Independent/group work 14.2.2019 at 12-14; correct solutions 28.2.2019 at 12-14
Submission: Please submit your responses via MyCourses as one zip file containing your responses in pdf and Matlab format.

The deadline for submitting your Exercise 3 responses is at 11:00 AM on Feb 28, 2019.

1. Acoustic mercury "fountain" (2p)

An ultrasonic beam is focused on the surface of liquid mercury directly from below. As a result a $100 \mu \mathrm{~m}$ tall fountain is formed. What is the $I_{\text {spta }}$? How about $I_{\text {sppa }}$, when the duty cycle of the ultrasound exposure is 40% ?

2. Geometric attenuation (6p)

Derive the expression of the geometric attenuation when the sound is produced by a:
a) point source,
b) line source.

3. Cavitation (6p)

Calculate the resonance size for a bubble excited by 1 MHz Ultrasound in water,
a) near the water-air interface at 1 atm
b) at 10 cm depth
c) at 1 m depth

4. Ultrasound safety (6p)

The instantaneous intensity at the PNP is:
a) $1 \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}$
b) $100 \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}$
c) $1000 \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}$

Which of these are likely to cause biological damage? Why?
Assume that the ultrasound is delivered in short pulses with no macroscopic thermal effects.

