clc clear all close all %% Exercise 1 (20p) %Parameters c= ... ; % speed of sound in water, m/s rho = ... ; % water density, kg/m^3 sigma = ... ; % surface tension, N/m mu = ...; % shear viscosity, Pa*s v0 = 0; % initial bubble boundary velocity, m/s pinf = 101325; % ambient pressure, Pa amp = 1e5; % pressure amplitude gamma = 1.4; % ratio between the specific heat capacities f = ... ; % driving frequency, Hz t_max = 13e-6; % maximum observation time dt = 1/(100*f); % time step, us R0 = 5e-6; % initial bubble radius %Variables syms R(t) pa(t) Rt = diff(R,t); % first derivative of bubble radius, dR/dt Rtt = diff(R,t,2); % second derivative of bubble radius, dR/dt pa = amp*sin...; % time delayed driving pressure, Pa p0 = pinf + 2*sigma/R0; % internal pressure of the bubble at equilibrium pg = p0*(R0/R)^(3*gamma); % gas perssure in the interior of the bubble pb = pg - 2*sigma/R - 4*mu*(Rt/R); % pressure on the liquid side of the bubble interface pbt = diff(pb,t); %dpb/dt % Define the differential equation eqn1 = ... == ... ; % implement here the differential equation %Solve differential equation [V] = odeToVectorField(eqn1); M = matlabFunction(V,'vars', {'t','Y'}); sol = ode45(M,[0 t_max],[R0 v0]); %Plots R = deval(sol,[0:dt:t_max],1); % bubble radius, m v = deval(sol,[0:dt:t_max],2); % bubble velocity, m/s a = ... ; % bubble acceleration, m/s^2