NBE-E4310 - Biomedical Ultrasonics

EXERCISE 5 (40p)

Independent/group work 21.3.2019 at 12-14; correct solutions 28.3.2019 at 12-14

Submission: Please submit your responses via MyCourses as one zip file containing your responses in pdf and Matlab format.

The deadline for submitting your Exercise 4 responses is at 11:00 AM on Mar 28, 2019.

1. Cavitation (11p)

Consider the differential equation proposed in the Exercise 4 task 1 and use same parameters.

- a) Calculate and plot the contribution of the pressure generated by the pulsating bubble to the total pressure field at a distance of $15 \mu m$ from the centre of the bubble. Consider the bubble as a pulsating sphere source. (8p)
- b) Plot the amplitude spectrum of the total pressure signal. (3p)

2. Thermal Dose 1 (9p)

Calculate how long it takes to reach tissue damage ($30 < TD_{43} < 240$) and tissue necrosis ($TD_{43} > 240$) in the following cases:

- a) $T_1 = 42.5 \,^{\circ}\text{C}$ (3p)
- b) $T_2 = 54 \,^{\circ}\text{C}$ (3p)
- c) $T_3 = 80 \, ^{\circ}\text{C}$ (3p)

3. Thermal Dose 2 (10p)

Calculate how long it takes to reach tissue damage ($30 < {\rm TD}_{43} < 240$) and tissue necrosis (${\rm TD}_{43} > 240$) in the following cases:

a)
$$T_1(t) = 70 (1 - e^{-t/10}) \, ^{\circ}\text{C}$$
 (5p)

b)
$$T_2(t) = 55 (1 - e^{-t/15}) \, ^{\circ}\text{C}$$
 (5p)

4. Biomedical applications (10p)

- a) Define the parameters that should be used in order to achieve histotripsy at $1\,\mathrm{MHz}$ without inducing thermal damage in tissue. (5p)
- b) Define the parameters that should be used in order to achieve thermal ablation at 1 MHz without inducing cavitation. (5p)