
 
BMUS – EX5

 

NBE-E4310 - Biomedical Ultrasonics 

EXERCISE 5 (40p) 
 

Independent/group work 21.3.2019 at 12-14; correct solutions 28.3.2019 at 12-14

    Submission: Please submit your responses via MyCourses as one zip file containing your responses in pdf
and Matlab format.           

    The deadline for submitting your Exercise 5 responses is at 11:00 AM on Mar 28, 2019.

______________________________________________________________________________________

1. Cavitation (11p)
 

Consider the differential equation proposed in the Exercise 4 task 1 and use same parameters. 

 

a) Calculate and plot the contribution of the pressure generated by the pulsating bubble to the total pressure
field at a distance of  from the         centre of the bubble. Consider the bubble as a pulsating sphere
source. (8p)

b) Plot the amplitude spectrum of the total pressure signal. (3p)

 

The total pressure at a distance r from the centre of the bubble is given by the sum of the driving pressure
and the pressure generated by the bubble.

where  can be approximated as the pressure field generated by a pulsating sphere.

   

where R is the radius of the bubble, r the observation point,  the bubble velocity.

 
%Parameters
c= 1500 ;                           % speed of sound in water, m/s
rho = 998 ;                         % water density, kg/m^3
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sigma = 0.072 ;                     % surface tension, N/m
mu = 0.001;                         % shear viscosity, Pa*s
v0 = 0;                             % initial bubble boundary velocity, m/s 
pinf = 101325;                      % ambient pressure, Pa
amp = 0.9e5;                        % pressure amplitude  
gamma = 1.4;                        % ratio between the specific heat capacities
f = 500e3 ;                         % driving frequency, Hz
lambda = c/f;                       % wavelength, m
k = 2*pi/lambda;                    % wave vector, rad/m
omega = 2*pi*f;                     % angular frequency, rad/s
t_max = 65e-6;                      % maximum observation time
dt = 1/(100*f);                     % time step, us
R0 = 6.5e-6;                          % initial bubble radius
 
%Variables
syms R(t) pa(t)
 
Rt = diff(R,t);                     % first derivative of bubble radius, dR/dt
Rtt = diff(R,t,2);                  % second derivative of bubble radius, dR/dt
pa = amp*sin(2*pi*f*(t+R/c));       % time delayed driving pressure, Pa
p0 = pinf + 2*sigma/R0;             % internal pressure of the bubble at equilibrium
pg = p0*(R0/R)^(3*gamma);           % gas perssure in the interior of the bubble
pb = pg -  2*sigma/R - 4*mu*(Rt/R); % pressure on the liquid side of the bubble interface
pbt = diff(pb,t);                   %dpb/dt 
 
% Define the differential equation 
eqn1 = (1-Rt./c).*R.*Rtt + 3/2.*Rt.^2.*(1-Rt./(3.*c)) == (1+Rt./c).*1./rho.*(pb-pa-pinf) + R./(rho.*c).*pbt;
                 
%Solve differential equation
[V] = odeToVectorField(eqn1);
M = matlabFunction(V,'vars', {'t','Y'});
sol = ode45(M,[0 t_max],[R0 v0]);
 
R = deval(sol,[0:dt:t_max],1);      % bubble radius, m
v = deval(sol,[0:dt:t_max],2);      % bubble velocity, m/s
a = [0 diff(v)/dt];                 % bubble acceleration, m/s
 
% Pressure generated by the bubble
r  = 15e-6;                         % distance from the bubble centre, m
pb = R/r.*max(abs(v)).*rho.*c.*(-i.*k.*R)./(1-i.*k.*R).*exp(i.*k.*(r-R)-i.*omega.*[0:dt:t_max]); % pressure generated by the bubble, Pa
pa = amp*sin(2*pi*f*[0:dt:t_max] + r/c); % time delayed driving pressure, Pa
p_tot = real(pb) + pa;                   % total pressure, Pa
 
% Plot
 
figure
 
subplot(211)
plot([0:dt:t_max]*1e6, p_tot*1e-6)
xlabel('Time (\mus)')
ylabel('Pressure (MPa)')
title('Total pressure field')   
% xlim([30 50])
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% ylim([-0.4 0.4])
 
subplot(212)
Fs = 1/dt;            % Sampling frequency                    
T = t_max;             % Sampling period       
L = length(R);             % Length of signal
t = (0:L-1)*T;        % Time vector
 
X = p_tot-mean(p_tot);
 
Y = fft(X);
P2 = abs(Y/L);
P1 = P2(1:(L/2)+1);
P1(2:end-1) = 2*P1(2:end-1);
 
f = Fs*(0:(L/2))/L/1e6;
plot(f,P1/max(P1)) 
title('Amplitude spectrum of p_{tot}(t)')
xlabel('Frequency (MHz)')
ylabel('| P_{tot}(f)|')
xlim([0 5])

 

2. Thermal Dose 1 (9p)  
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Calculate how long it takes to reach tissue damage ( ) and tissue necrosis ( ) in
the following cases:

 

a)   (3p) 

T = 42.5;                                        % Costant temperature, °C
tissue_dmg_tsh = 30*60;                        % Equivalent time at 43 °C for tissue damage, s
necrosis_tsh = 240*60;                         % Equivalent time at 43 °C for necrosis, s
R = 0.25;                       
 
syms t
 
eqn1 = tissue_dmg_tsh == int(R^(43-T),t,0,t);       
eqn2 = necrosis_tsh == int(R^(43-T),t,0,t); 
 
t_tissue_dmg = double(solve(eqn1,t));       % Time for tissue damage at T, s
t_necrosis = double(solve(eqn2,t));         % Time for necrosis at T, s

 

b)    (3p)

T = 54;                                     % Costant temperature, °C
R = 0.5;                       
 
syms t
 
eqn1 = tissue_dmg_tsh == int(R^(43-T),t,0,t);       
eqn2 = necrosis_tsh == int(R^(43-T),t,0,t); 
 
t_tissue_dmg = double(solve(eqn1,t));       % Time for tissue damage at T, s
t_necrosis = double(solve(eqn2,t));         % Time for necrosis at T, s

 

c)    (3p)

T = 80;                                   % Costant temperature, °C
R = 0.5;                       
 
syms t
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eqn1 = tissue_dmg_tsh == int(R^(43-T),t,0,t);       
eqn2 = necrosis_tsh == int(R^(43-T),t,0,t); 
 
t_tissue_dmg = double(solve(eqn1,t));       % Time for tissue damage at T, s
t_necrosis = double(solve(eqn2,t));         % Time for necrosis at T, s

 

3. Thermal Dose 2 (10p) 
 

Calculate how long it takes to reach tissue damage ( ) and tissue necrosis ( ) in
the following cases:

 

a)   (5p)

R = 0.5 ; 
 
syms t 
T1(t) = 70*(1-exp(-t/10));
 
eqn1 = tissue_dmg_tsh == int(R^(43-T1(t)),t,0,t);
eqn2 = necrosis_tsh == int(R^(43-T1(t)),t,0,t);
 
t_tissue_dmg = double(solve(eqn1,t));       % Time for tissue damage at T, s
t_necrosis = double(solve(eqn2,t));         % Time for necrosis at T, s

 

b)   (5p)

R = 0.5 ; 
 
syms t 
T1(t) = 55*(1-exp(-t/15));
 
eqn1 = tissue_dmg_tsh == int(R^(43-T1(t)),t,0,t);
eqn2 = necrosis_tsh == int(R^(43-T1(t)),t,0,t);
 
t_tissue_dmg = double(solve(eqn1,t));       % Time for tissue damage at T, s
t_necrosis = double(solve(eqn2,t));         % Time for necrosis at T, s
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4. Biomedical applications (10p)
 

a)  Define the parameters that shoud be used in order to achieve histotripsy at without inducing
thermal damage in tissue.  (5p)

 

In order to obtain tissue homogenisation, the mechanical index should be  high enough to produce cavitation.
If we consider a  then:

Assuming that the signal is sinusoidal, with  the  is given by:

where  ans has to be defined. 

Thermal damage should be also avoided, which means:

From the Pennes’ Bioheat Transfer Equation  one can obtain the relation between the rate of temperature
change and the the ultrasound  power 

deposition per unit volume: 

where is the tissue density,  is the tissue specific heat capacity and α is he absorption coefficient. The
time variation of the temperature is given by: 

    

By including the temperature epression into the termal dose expression and integrating we obtain: 
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which gives the general formula to calculate what the DC should for a specific signal duration  in order not to
cause thermal damage in tissue. 

If we consider a singal duration of , then .

alpha = 0.1e-2 ;                % Absorption coefficient in liver, 1/m (Ultrasonic absorption in liver tissue,Leon A. Frizzell)
rho = 1079 ;                    % Liver density, kg/m^3
c_p = 3540 ;                    % heat capacity of liver
c = 1600 ;                      % speed of sound in liver, m/s
f = 1e6 ;                       % US frequency, Hz
TD_43 = 30*60;                  % thermal dose threshold, s
R = 0.25 ;                      
T1 = 37 ;                       % initial temperature, °C
PNP = 3e6 ;                     % Peak negative pressure, Pa
I0 = PNP^2/rho/c;               % acoustic intensitity peak, W/m^2
t = 3600;                       % signal duration, s           
 
syms  DC
 
eqn = -rho*c_p/(alpha * I0 *DC) * 1/log(R)*R^(43 - T1 - alpha * I0 * DC/(rho*c_p)*t) == TD_43;
 
DC = double(solve(eqn, DC));

 

b)  Define the parameters that shoud be used in order to achieve thermal ablation at without inducing
cavitation.  (5p)

 

In order to obtain tissue thermal ablation, the thermal dose has to be greater than . The

mechanical index instead has to be lower than  to avoid cavitation. The peak negative pressure should
be:

    

In this case .

alpha = 0.1e-2 ;                % Absorption coefficient in liver, 1/m (Ultrasonic absorption in liver tissue,Leon A. Frizzell)
rho = 1079 ;                    % Liver density, kg/m^3
c_p = 3540 ;                    % heat capacity of liver
c = 1600 ;                      % speed of sound in liver, m/s
f = 1e6 ;                       % US frequency, Hz
TD_43 = 240*60;                 % thermal dose threshold, s
R = 0.5 ;                      
T1 = 37 ;                       % initial temperature, °C
PNP = 500e3 ;                   % Peak negative pressure, Pa
I0 = PNP^2/rho/c;               % acoustic intensitity peak, W/m^2
t = 3600;                       % signal duration, s 
 
syms  DC
 
eqn = -rho*c_p/(alpha * I0 *DC) * 1/log(R)*R^(43 - T1 - alpha * I0 * DC/(rho*c_p)*t) == TD_43;
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DC = double(solve(eqn, DC));
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