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ABSTRACT

A regionalization of the conterminous United States is accomplished using hierarchical cluster analysis on
temperature and precipitation data. The “best” combination of clustering method and data preprocessing strategy
yields a set of candidate clustering levels, from which the 14-, 25-, and 8-cluster solutions are chosen. Collectively,
these are termed the “reference clusterings.” At the 14-cluster level, the bulk of the nation is partitioned into
four principal climate zones: the Southeast, East Central, Northeastern Tier, and Interior West clusters. Many
small clusters are concentrated in the Pacific Northwest. The 25-cluster solution can be used to identify the
subzones within the 14 clusters. At that more detailed level, many of the areally more extensive clusters are
partitioned into smaller, more internally cohesive subgroups.

The “best” clustering approach is the one that minimizes the influences of three forms of bias—methodological,
latent, and information—for the dataset at hand. Sources of, and remedies for, these biases are discussed.
Sensitivity tests indicate that some of the clusters in the reference clusterings lack robustness, especially those
in the Northeast quadrant of the United States. Some of the tests involve small and large alterations to the data
preprocessing strategy.

The major shortcomings of the analysis procedure are that the clusters are unnaturally constrained to be
nonoverlapping and also that potentially important data from points outside of the political boundaries of the
conterminous United States and over water are not included. Also, other variables that could be important or
useful in characterizing climate type could be added to, or used in place of, the temperature and precipitation
variables used herein. Further work on data preprocessing techniques is also required. Remedies for these and
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other shortcomings are proposed.

1. Introduction

Several researchers have used a variety of data to
define climatic types and delineate zones of similar cli-
mate. The most famous examples are the Koeppen
(1923) and Thornthwaite (1931) classifications. Al-
though they were motivated by different reasons and
utilized different data, both classifications entailed the
a priori definition of a set of climate types or rules that
were then used to classify each area of the earth. The
climatic types were externally specified or indirectly
suggested by the data, instead of directly issuing from
the data.

That particular approach is by no means unjustifi-
able. This work, however, presents an alternative ap-
proach, one that attempts to delineate climate zones
in a more direct fashion. The data used are temperature
and precipitation in the form of long-term monthly
means for the conterminous United States. The basic
idea is quite simple: locales that have similar charac-
teristics (including means and variances) with respect
to these variables should have roughly similar climates.
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Other variables potentially important or useful in
characterizing climate type could be added to the da-
taset in the future, including those that combine tem-
perature and precipitation information in some specific
way (such as potential evapotranspiration, which forms
the basis of the Thornthwaite classification).

To objectively determine the climatic zones present
within the conterminous United States, a somewhat
controversial technique known as cluster analysis is
employed. Cluster analysis has long been used in bi-
ology, psychology, and other disciplines, where it has
generated extensive literature. Its usage in the atmo-
spheric sciences has been comparatively rare, however,
possibly due to the controversy and the inherent am-
biguities in its use (Wolter 1987). Still, papers using
cluster analysis are now appearing in the atmospheric
sciences journals at an increasing rate.

Some forms of cluster analysis begin with the iden-
tification of a set of variables tabulated for each member
of a set of objects or cases that is the subject of the
clustering. Then, some measure of similarity or dis-
similarity between pairs of objects (the concept of dis-
tance) is chosen. Preprocessing of the variables before
calculation of the distance measures is an area of sig-
nificant concern. Different variables may be measured
on different scales and may also contain irrelevant and/
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or redundant information. Some of the above-cited
studies have applied cluster analysis to raw data, one
variable at a time (e.g., Wolter 1987). This method
avoids the problem of mixing variables of different type
or scale but also results in a different clustering for
each variable, which may not always be desirable.

When confronted with variables of differing type or
scale, or simply with an excessively large number of
potentially important variables, a number of research-
ers have adopted variable manipulation and/or re-
duction strategies such as principal components anal-
ysis (PCA) (e.g., Gadgil and Iyengar 1980; Gadgil and
Joshi 1983; Maryon and Storey 1985; Kalkstein et al.
1987; and Kalkstein et al. 1990, to name a few). PCA
creates new variables (components) composed of mu-
tually orthogonal linear combinations of the original
variables, each accounting for a specific fraction of the
original total variance as indicated by the size of its
associated eigenvalue. Retention of only the most sig-
nificant components accomplishes variable reduction
while ostensibly minimizing information loss. These
new variables can be used to generate component scores
that can be clustered in place of the raw data. PCA has
been used by itself to perform regionalizations (e.g.,
Richman and Lamb 1985).

There are two goals in this paper: to discuss problems
confronted prior to the commencement of clustering,
including variable preprocessing issues, and to present
and assess the quality and stability of a regionalization
of the conterminous United States-based clustering of
the processed temperature and precipitation dataset.
The data are described in section 2, and section 3 pre-
sents some background material on cluster analysis and
the preprocessing strategies adopted. The first goal in-
volves the identification and assessment of potential
biases—in the dataset, data preprocessing procedures,
and clustering strategies—that if left unconfronted may
exert an overwhelming influence on the regionalization.
This is discussed in section 4, which also includes a
few proposed remedies for some of the biases and iden-
tifies additional problems that require further study.
The “best” combination of clustering method and data
preprocessing strategy yields regionalizations that are
collectively referred to as the “reference clusterings.”
These are described in section 5. Section 6 presents a
few “variant” clusterings that result when different
strategies are adopted. The final section presents the
summary and proposals for future work.

2. Data

This study employs the widely used National Cli-
matic Data Center (NCDC) climate division dataset,
which, in this application, consists of monthly tem-
perature means and precipitation accumulations (24
variables total ) for the conterminous United States over
the 50-year period 1931-1980. The domain consists of
344 climate divisions of irregular size; a base map is
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presented in Fig. 1. The dataset is reduced to two di-
mensions by constructing 50-year means for each of
the 24 variables. Although this sacrifices some infor-
mation that might be valuable in the clustering process,
it was done primarily because we wish to process the
variables with a principal components analysis (PCA).
This is an “R-mode” analysis (Cattell 1952).

Most of the 24 variables are not normally distributed
across the 344 divisions. No single transformation can
force normality, even for a particular data type (tem-
perature or precipitation). The skewness of the
monthly precipitation variable distributions with re-
spect to locations evinces a strong seasonal cycle, being
substantially positive in winter and slightly negative in
summer. Kurtosis displays qualitatively similar behav-
ior. Seasonality is also present in the temperature dis-
tribution data, but with extreme skewness centered in
the spring and autumn seasons while summer months
evince bimodal distributions.

Fortunately, neither cluster nor principal compo-
nents analysis explicitly demands that variables be
normally distributed to operate correctly. (However,
PCA utilizes correlations or covariances that implicitly
assume linear relationships among the variables.) De-
partures from normality do hamper the usage of sta-
tistical population tests on the clustered data like the
F and t tests, but a more serious obstacle is that clusters
cannot be thought of as randomly drawn samples. In-
deed, if they were no better than random samples, the
clusters would have no value. Despite this caveat, we
will utilize “pseudostatistics” constructed to mimic F
and ¢? tests, which have been evaluated in the cluster
analysis literature, in an advisory role (section 3d).

3. Background

As this paper is concerned with a combined appli-
cation of principal components analysis and cluster
analysis on a multivariate dataset, we will sketch below
some background material for the two techniques,
along with a brief treatment of the “number of clusters”
problem. Richman’s (1986 ) review article provides an
excellent introduction to PCA. As conventions regard-
ing symbols and terminology in PCA are sadly lacking,
however, we have elected to generally follow the no-
tation employed by Jackson (1991). More complete
discussions of clustering methods and their inherent
characteristics may be found in such textbooks as
Spaeth (1980) and in papers such as Kalkstein et al.
(1987).

a. Principal components analysis (PCA)

Say we have an n X p data matrix X, where 7 is the
number of objects and p is the number of variables.
The means of the p variables have been removed, but
no other manipulation of the original raw data has
been made. PCA may then be applied to the variables
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HCDC Climate Division Base Map

FiG. 1. Base map of the 344 climate divisions of the conterminous United States in the National Climatic Data Center dataset. Note
how the resolution varies radically over the domain. The highlighted division, in South Carolina, was not included in most of the clusterings

presented in sections 5 and 6.

or the objects. The initial goal in either case is the re-
placement of the original correlated entities ( variables
or objects) with new component entities that are mu-
tually uncorrelated.

A typical PCA applied to the variables can start with
S, the p X p variable covariance matrix defined as
XTX(n— 1)7". This matrix is transformed into a di-
agonal eigenvalue matrix L, which has as many as
min(n, p) nonzero entries, and an orthonormal eigen-
vector matrix U, both dimensioned p X p. The p col-
umn vectors composing U are unit length and mutually
uncorrelated. This eigenvector matrix is often refor-
mulated as V' = UL'/?, giving the kth column of V
length equal to the kth eigenvalue.

In the atmospheric sciences literature, the eigenvec-
tors in U are often termed “‘empirical orthogonal func-
tions,” or EOFs. The entries of this matrix, the eigen-
vector “loadings,” define new variables, consisting of
linear transformations of the original variables, which
will be termed herein as “component variables” or
“principal components” (PCs). The multiplication Z
= XU generates another n X p data matrix, where the
p dimension now represents the new uncorrelated

component variables, Z,, Z,, ..., Z,. When con-
structed in this manner, the new component variable
Z; has variance equal to its associated eigenvalue /,
the kth diagonal entry in L, and the sums of the vari-
ances of the new components equals that from the
original variables (i.e., total variance is preserved). The
new data values for the objects will be termed herein
as the ““variance-weighted scores,” but there are a va-
riety of names used to describe these new data.! If the
new score matrix is formed as Y = XUL ~!/2, then each
new component variable, Y;, Y», ..., Y, has identical
unit variance, no matter what portion of the original
variance its component actually represents. These new
data will be referred to as “standardized scores.” Note
that total variance may not be preserved in this case.

The eigenvector matrix resulting from the PCA is
often subsequently truncated and/or rotated. Trun-

! Sometimes, the term z scores have been used for these scores
(Jackson 1991), but this term is avoided herein as it is also often
used to describe the transformation of data to common unit variance,
a diametrically opposed definition.
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cation entails the deletion of some of the nonzero ei-
genvalues of L, usually the smaller ones, and thus some
amount of the original total variance of the p variables.
Sometimes, only a few of the components are found
to account for the bulk of the original total variance.
Rotation—actually secondary rotation—is performed
to make a set of new eigenvectors (and thus new scores)
that meet certain criteria (such as “simple structure”)
and may be more readily interpretable (see Richman
1986). The rotation may be orthogonal or oblique. If
both truncation and rotation are employed, the former
is performed first. In this paper, PCA is applied to a
variable covariance matrix, and both truncation and
orthogonal rotation are applied.

b. The concept of “distance”

The goal of cluster analysis is to detect those objects
that are most similar and group them together into
one entity or cluster. To do this, some measure of
(dis-)similarity or “distance” between pairs of objects
must be created. With metric data, the most commonly
used distance measure is the Euclidean distance. The
Euclidean distance between two objects i and j in the
n X p data matrix X is simply the squared difference
between them for each of the p variables, summed over
the variables. This may be written as follows:

P 172
df[Z (xki_xkj)z] . (n

k=1

This expands into an 7 X n distance (or proximity)
matrix D, which is symmetric about a main diagonal
containing zeroes.

Note that we have collapsed the data into an n X n
matrix, eliminating the individual variables. Because
of this, there are numerous practical problems with
using this distance measure. First, the average contri-
bution of each of the p variables to D is dictated by its
relative variance (Sokal and Sneath 1963), which is
especially troublesome when the variables being com-
bined are measured in different—and usually arbi-
trary—units. This concern has been most commonly
addressed in the past by transforming each variable to
common unit variance. However, recent work has
shown that other standardizations might be superior
(Milligan and Cooper 1988).

The second concern lies in the fact that the p vari-
ables are often intercorrelated and, except under special
conditions, operations that change the variable inter-
correlations will change the Euclidean distance between
any given pair of objects. These conditions will be il-
lustrated using PCA. Let D(X) be the Euclidean dis-
tance matrix for the objects computed using the p orig-
inal correlated variables. Then PCA is performed on
the variable covariance matrix, creating the variance-
weighted-score matrix, Z. If all the components are
retained (optionally including components associated
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with zero eigenvalues, as they have no bearing on the
result), then D(Z) = D(X). The new component
variables are uncorrelated, and the appropriate scaling
to preserve the interobject Euclidean distance is to give
each variable the same variance its component ex-
plains.

If the PCA is truncated to eliminate the smaller (but
nonzero) variance components, then the distance ma-
trix constructed from the truncated scores matrix will
not be identical to that of the untruncated scores or
original data. Since each variable’s average contribution
is determined by relative variance, however, the effect
of eliminating very small components may be quite
slight. (This is sometimes illusory, as demonstrated in
section 4c.) The Euclidean distance matrix is also in-
sensitive to orthogonal secondary rotations, that is,
D(Z) = D(Z,,), so long as truncation (if any) is per-
formed prior to the rerotation.

What if the # X p matrix of standardized component
scores, Y, is employed instead of the variance-weighted-
scores Z ? It is clear that generally D(Y) # D(X) and
D(Y) # D(Z). It turns out that applying the Euclidean
distance to the full set of standardized scores is equiv-
alent to employing a modified geometric distance called
the Mahalanobis distance on the original data. Equa-
tion (1) can be rewritten as

dy = [(X; — Z)M(X; — X)T]'? (1a)

where x; (1 X p)is the ithrowof Xand Misap X p
scaling matrix. For the Euclidean distance, M is the
identity matrix, while for the Mahalanobis metric, M
= S7!, the inverse of the variable covariance matrix.
Designating the Mahalanobis distance matrix as D,,,
then, it is found that if the full set of p components are
retained (necessarily excluding all components with
identically zero eigenvalues), D, (X) = D, (Z)
= D,,(Y) = D(Y). Thus, using the Mahalanobis dis-
tance metric on the original variables is tantamount
to taking those variables and forcing them to be both
uncorrelated and standardized, as can be done with a
PCA on the variables yielding standardized scores. The
issue of truncating standardized components is raised
in section 4b.

Another alternative is to use a dissimilarity measure
formed in some fashion from the n X n correlation
matrix of the objects. The use of the correlation coef-
ficient r;; as a measure of similarity is common but not
always appropriate (Cronbach and Gleser 1953). The
Euclidean distance responds to differences in object
means, variances, and distributional shapes with re-
spect to the p variables between any two objects, unless
these differences have already been adjusted out of the
data. Differences in object means and variances are
eliminated when the interobject correlations are com-
puted, leaving only information regarding the shapes.
Indeed, the interobject correlation coefficient is directly
related to the Euclidean distance computed using data
that has already been standardized to zero mean and
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unit variance for each object, by d; = [2(n — 1)(1
— r;)]'/?. In applications—such as the present one—
where differences in object means and variances are
considered important information that should be re-
flected in the clusters, standardizing the data with re-
spect to the objects is not appropriate. In addition,
standardizing the objects effectively unstandardizes the
variables, if that had been performed to eliminate ar-
bitrary variable scaling differences. Finally, we note that
several other distance metrics exist that are compara-
tively rarely used.

¢. Clustering algorithms and approaches

However it is generated or justified, the distance ma-
trix is used as input to some clustering algorithm. The
most commonly used clustering strategies are hierar-
chical and partitioning cluster analysis. Both result in
the establishment of “hard” (nonoverlapping) clusters,
in which each object is assigned to only one cluster.
This may be excessively restrictive in many applications
(including the present one). The former strategy itself
has two varieties: agglomeration and division. Ag-
glomeration starts with » clusters, each containing one
member, and at each step fuses the cluster pair with
minimum separation distance to form a new cluster.
The number of clusters remaining in the dataset is de-
creased by one each step, terminating when one all-
inclusive cluster is created. The results are then in-
spected to determine which step or clustering level rep-
resents the “best” solution. Division simply operates
in reverse. Both, however, can only act on the clusters
that it has fused (or divided) at earlier steps and cannot
reconsider what it has created previously.

In the partitioning clustering approach, an indepen-
dent clustering is obtained for each desired clustering
level. Because of this independence, partitioning clus-
tering can optimize the division of the objects at each
step. However, partitioning analyses require an initial
selection of objects to act as cluster “seeds.” Difficulties
involved in the selection of seeds and the sensitivity of
the results to the seeds chosen may be reasons why the
partitioning approach is relatively less popular. Also,
if the goal is to identify not only distinct clusters but
also the subgroups they may contain, which is a goal
of this work, then the hierarchical approach is the more
attractive of the two anyway. In our opinion, the
“number of clusters” problem (next subsection) is also
less severe in hierarchical analyses, which is why the
hierarchical approach was chosen for this study.

There are many different agglomerative hierarchical
clustering methods. All methods agree that the cluster
pair with the smallest distance should be joined at any
step. They differ on how the distance between the new
and remaining clusters is recomputed. Say clusters 4
and B are joined at some step, because their separation
distance (d3) is the smallest. With the single linkage
method, the distance between the new cluster A8 and
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another cluster C (i.e., the distance d4z-¢) is taken to
be smaller of the two distances between the original
clusters and cluster C (i.e., d4c and dpc). If the larger
of the two distances is chosen, the method is called
complete linkage. If the average is taken, then the
method might be called simple average linkage.
None of those three methods takes into account the
number of members in either cluster 4 or cluster B in
determining the new distances, which might allow a
cluster with few members to unfairly influence the new
distances after being merged with a much larger one.
An alternative is to use a weighted average of the mean
cluster distances, which is tantamount to taking the
average distance over all involved object pairs, includ-
ing those already absorbed into the clusters at previous
steps. This creates group average linkage, a popularly
used method that will be referred to herein as just “av-
erage linkage.” In this method, the recomputed distance
between new cluster AB and cluster C is given by

dug-c = (Nadyc + Npdpc)/(Ns+ Np), (2)

where N, and Ny are the number of members in clusters
A and B. Additional background on this method can
be found in Kalkstein et al. (1987). Another popular
method is the Ward method, a least-squares technique
designed to minimize information loss at each merger
(e.g., Ward 1963; Spaeth 1980). It includes not only
the distances d ¢ and dpc in the recomputation, but
also the distance between the fused clusters d,z as well.

This study employs the group average linkage
method, using our own extensively tested code. Fol-
lowing SAS, though, we used squared Euclidean dis-
tances; note that some other software packages take
the square root by default.? The discussion about av-
erage linkage and its characteristics in Kalkstein et al.
(1987) assumes the usage of squared distances. Spaeth
(1980), as well as other sources, gives the formula for
average linkage using the square-root distance. In
practice any distance metric should probably be usable,
including the Mahalanobis distance.

d. The number of clusters problem

Cluster analysis represents a grand compromise be-
tween specificity and generality. Each merger unavoid-
ably results in a loss of precision and detail, but this is
justifiable as long as the ability to interpret and gen-
eralize is enhanced. However, unlike many other stud-
ies, particularly in the social sciences, the extraction of
“true” clusters from the data is not the principal goal
of this work, although some may actually exist. Par-
ticularly in the eastern portion of the United States,
temperature and precipitation vary rather smoothly

2 Obviously, squaring the distance enhances intercluster dissimi-
larities. As the clustering algorithms typically recompute distances
additively, this choice does have some effect on the clustering outcome.
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over space, so it is unlikely there will be any truly
“hard” clusters there anyway, but rather “fuzzy” or
overlapping clusters. Instead, the main goal is to find
an adequate subdivision of the objects, in order to define
climate types, without sacrificing too much detail.
Thus, we will use principally subjective means to
choose among the many clustering levels available. In
this approach, there is no one “correct” clustering level,
but rather a number of viable solutions depending on
the level of detail desired.

However, even if we are not overly concerned with
the recovery of “true” clusters, the “number of clusters”
problem can still be a vexing one. Objectively, some
clustering levels may be more appropriate than others.
Even though detail is lost with each merger, it is un-
likely that this loss is a smoothly varying function of
the clustering level. A long-standing rule of thumb has
been to plot the distance between the clusters merged
at each step and look for plateaus or natural breaks.
Another approach is to compute a ratio of the sum of
squares accounted for in the clustering by the total sum
of squares, yielding a coefficient of determination,
which can be examined the same way. Neither of those
methods performed particularly well in the Monte
Carlo simulations of Milligan and Cooper ( 1985), par-
ticularly not the latter. Of the 30 “stopping rules” they
evaluated, the best performing were Calinski and Har-
abasz’ (1974) “pseudo F,” statistic, and the “Je(2)/
Je(1)” criterion proposed by Duda and Hart (1973).
The authors cautioned that performance of some these
rules may be data dependent. The simulations were
made using clusters that were distinct and well sepa-
rated (in Euclidean space ), which should permit max-
imum performance of the various rules. In practice,
many (if not most) of the clusters in the data will not
be so well defined.

The Calinski and Harabasz pseudo-F criterion is
given by the formula below:

pseudo F = [A/W]1*[(n— k)/(k— 1)], (3)

where A and W are the among- and within-cluster sum
of squares, respectively, » is the number of objects, and
k is the number of existing clusters. In many (but not
all) instances, the statistic has large values early in the
clustering procedure (when A4 is large and W is small)
that decrease along with the number of clusters re-
maining. This tendency is partially countered by the
second term in square brackets, which increases each
step. The statistic is undefined in the very last step when
that term becomes infinite.

The Duda and Hart (1973) criterion is a ratio of the
within-cluster sum of squares computed for two clusters
that are candidates for fusion at a given step both before
and after the fusion. This can be converted to a pseudo-
1? statistic as shown in the documentation for SAS
(1985, p. 268). The pseudo-¢? test tends to have small
values when small and/or similar clusters are fused
and larger values as cluster memberships or dissimi-
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larities increase. Therefore, it provides information
qualitatively similar to that in the other pseudotest.
These are termed “pseudotests” because they violate
the usual statistical assumptions that underlie such
tests, and thus we use them cautiously, in an advisory
role only. We will first subjectively determine the
amount of detail we wish to retain (by choosing an
approximate number of clusters), and then employ
the pseudostatistics to select among the available clus-
tering levels in that particular neighborhood. SAS
(1985) recommends looking for Jocal peaks in the
pseudo- F test that are followed by sudden jumps in
the pseudo-¢? statistic for the next (more general) clus-
tering level. In our experience, most of the local peaks
in the pseudo- F were associated with the merging of
clusters with smaller than average memberships for that
point in the clustering procedure that precedes a fusion
involving at least one large (in membership) cluster in
the next step. That subsequent merger results in a par-
ticularly large increase in W, thus forcing a sharp de-
crease in F and a jump in ¢2. It seemed intuitively
reasonable to us to look at clustering levels that precede
particularly large or disparate mergers. Because of our
motivation for clustering, we ascribe little importance
to the global peaks of these statistics. Indeed, they tend
to point to clustering levels that possess an inadequate
amount of detail for our present purposes anyway.

4. Potential biases

One must recognize various biases that, if left un-
confronted, might unduly influence or even outright
determine the resulting clusterings. Three such poten-
tial biases are methodological bias, due to the quirks
of the various clustering methods; /atent bias, which
may lurk within the objects to be clustered due to their
spatial distributions; and information bias, owing to
the repetition of information among the variables of
the dataset, as well as their specific scalings. Each will
be considered in turn.

a. Methodological bias

Methodological biases are now fairly well under-
stood. Many clustering methods tend to forge clusters
possessing some particular characteristic. For example,
single linkage is famous (or infamous) for “chaining,”
which results in the production of one huge cluster
that grows at each step at the expense of the remaining
clusters, which often have few members. The Ward
method has been found to be biased toward producing
clusters with a relatively similar number of members,
sacrificing cluster distinctiveness (e.g., Kalkstein et al.
1987). Such statistics as the pseudo-F and ¢?> may lead
to the conclusion that there are no true (or only over-
lapping and inseparable ) clusters in the data, owing to
their similarity of size and the general lack of distinc-
tiveness among them; this did occur in our analyses
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on the climate dataset. Still, Ward’s method has its
cadre of supporters owing to its attractive least-squares
approach, and has been found to work well in some
applications. The average linkage method tends to form
clusters with similar variances. The Ward and average
linkage methods are among the better choices in sit-
uations where the clusters embedded in the data have
compact shape (in Euclidean space), even if inter-
cluster separations are poor. There is a large body of
work demonstrating these biases in the social sciences
literature. In the atmospheric science literature, Kalk-
stein et al. (1987) present a particularly nice demon-
stration.

Of these methodological biases, that of average link-
age method seems to be least worrisome to us for this
particular application. However, the method does not
guarantee that the roughly similar variances obtained
are in fact the smallest possible variances, which would
indicate optimal between-cluster differences in addition
to the desired internal consistency. One of the earliest
of the agglomerative hierarchical algorithms to be cre-
ated, average linkage continues to be popular (used by
Wolter 1987; Kalkstein et al. 1987; Schulz and Samson
1988, among others). Other methods were considered
in the course of this research, but only average linkage
is employed herein. The reader should keep in mind,
however, that results from cluster analysis can be more
revealing of methodological bias than of true clusters
that may or may not be present in the data, particularly
if an especially poorly behaved clustering method is
adopted. :

b. Latent bias

The original intent of the NCDC Climate Division
dataset was to subdivide states, and the nation, into
zones of roughly uniform climate. However, numerous
constraints conspired to undermine this goal. The figure
reveals a marked tendency toward concentrating
smaller, more evenly sized divisions in the eastern and
southern sections of the United States, with larger and
more erratically sized divisions to the west. The divi-
sions are also compelled to follow boundaries that often
have little to do with climate, within each state and for
the conterminous United States as a whole. Neighbor-
ing land areas and water bodies are not represented.

One result of this skewing is that the data domain
contains several unrealistic “peninsular’ areas, such as
New England and Florida. The climate divisions in
Maine might be more likely to cluster with locations
in eastern Canada rather than those within the United
States, but are prevented from doing so, thus forcing
the creation of a different and less representative cluster
in this area than might otherwise have been established.
This situation is at least superficially analogous to the
problem of artificially finite domains in numerical
simulations of fluid flow. The geographic bounds of
the climate dataset represent essentially ‘“closed”
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boundaries across which clusters cannot pass. Ob-
viously, short of including the entire world in the anal-
ysis, it might be better to cluster a much larger area
than the specific region of interest, in order to minimize
possible influences of the finite domain. This is not a
certain cure because climate types need not be spatially
contiguous.

The principal concern here is that the uneven or-
dering of unequally sized divisions and the finite and
arbitrary nature of the data domain could greatly
affect the results, either through predetermining
where the cluster “anchors” will reside (i.e., where
the agglomerative hierarchical clustering is com-
pelled to begin) or by exerting undue influence on
how the clustering proceeds. Both are important in
hierarchical clustering because of its inherent con-
straints. The latter concern is particularly acute when
a method that can exhibit bias with respect to cluster
membership size, such as Ward’s method, is used.
In the average-linkage “reference clusterings” to be
presented later clusters in the eastern United States
tend to have moderate spatial size but are member-
ship rich, owing to the small size of the divisions
there. In the western states, however, a cluster is es-
tablished that is spatially large but membership poor,
because the divisions there tend to be large. Thus,
in this application, the resolution of the climatic da-
taset is finer in the east than in the west. When a
membership-biased method like Ward’s is used in-
stead, the clusters of the eastern United States lose
members and the western cluster is forced to expand,
resulting in diminished cluster distinctiveness. Thus,
uneven resolution of the dataset would have some
impact on the results.

The influences of the data domain’s finite size, its
shape, and irregular distribution of data points were
tested in several ways. One, briefly described in sec-
tion 6d, consisted of processing and clustering data
after interpolation onto a uniform mesh. In another,
several clustering methods were used to cluster phys-
ical distances, computed along great circles between
division centroids. This test represents the clustering
of a homogeneous field that is sampled in an irregular
and finite manner. The ideal solution would consist
of a set of spherical, overlapping clusters of equal
areal size. The ideal solution is not obtainable owing
to the hardness of the clusters and the inherent biases
of the clustering methods. In this test, Ward’s method
displayed its tendency to forge clusters with similar
membership sizes, which impeded the establishment
of equal area clusters. The performance of average
linkage was judged to be superior, if still imperfect.
The Ward and average linkage solutions were iden-
tical in the peninsular areas, indicating that domain
shape dominated methodological bias in those areas.
Clusters residing in those zones will be treated
with suspicion until concerns about latent bias
can be eased.
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c¢. Information bias

As discussed above, the clustering algorithm em-
ployed plays a significant role in determining the clus-
tering outcome. For any given algorithm, however, the
clustering solution may also be extremely sensitive to
the particular distance measure (Euclidean or Mahal-
anobis, among others) adopted and how the variables
are processed (if at all) prior to the computation of
interobject distances. Some of those problems related
to variable intercorrelations and decisions made re-
garding variable and object scalings were discussed in
section 3b.

Several additional problems may also be recognized,
relating to what will be called the “information con-
tent” of the variables. Suppose a subset of the p vari-
ables is sufficient to represent a “true” cluster structure
partitioning the objects, with the remaining variables
being irrelevant, providing no information whatsoever
regarding the true clusters. Since the true cluster struc-
ture is unknown—the goal of the cluster analysis being
its extraction—it is not immediately obvious which, if
any, of the p variables are actually irrelevant. However,
the major effect of including these irrelevant variables
in the distance computations will be to mask the true
cluster structure, perhaps beyond recovery. The prob-
lem of detecting and treating irrelevant variables has
been addressed by De Soete (1986), among others.

We are concerned herein with essentially the opposite
problem. Suppose a variable included in the dataset is
truly relevant in that it contains information regarding
a latent, but unknown, cluster structure embedded in
the data. Suppose further that the information the rel-
evant variable provides is also contained in, or spread
among, one or more additional variables. Thus, the
problem is one of redundant or repeated information.
The inclusion of redundant information may have a
serious effect on the clustering outcome and, when its
inclusion is inadvertent, results in what is termed herein
as “information bias.” The motivation for our concern,
and our present remedy for the bias, is outlined below.

1) THE REDUNDANCY PROBLEM

The most obvious information redundancy might
be thought to exist between two (or more) variables
that are very highly correlated. This implies that at
least one variable has been included that contributes
little unique information about the cluster structure
embedded in the data, and instead chiefly repeats (and
magnifies) information obtainable from other vari-
ables. This would not be a problem if somehow each
variable were restricted to contributing only its unique
information regarding the latent cluster structure to
the distance computations, and if further, its infor-
mation were somehow scaled relative to its actual im-
portance. Both of these “corrections” occur in a
regression analysis owing to its “extra sum of squares”
principle. However, none of the distance metrics used
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in cluster analysis possesses such a principle, mainly
because no dependent variable exists prior to the clus-
tering, nor is such a variable created that is actually
independent of the clustering outcome. Therefore, re-
dundant information must be identified and eliminated
from the variables prior to the computation of the dis-
tance matrix.

The clusters are groups of objects embedded within
a possibly multidimensional space defined by certain
distinguishing characteristics that are ultimately rep-
resented by the variables or some combinations thereof.
The objects distributed in this characteristic space may
tend to exhibit clustering or clumping, and the goal of
the cluster analysis is to delineate those clusters. How-
ever, the clusters may not be well separated in this
space for a variety of reasons. For example, perhaps
some important additional dimension is missing, or
perhaps the true clusters should be overlapping anyway.
It is obvious that changing the variance of one char-
acteristic dimension relative to the others distorts the
embedded cluster structure, enhancing the distinction
between some clusters and lessening it between others.

This is true even in the ideal situation in which the
clusters are compact and well separated (in the Eu-
clidean sense), but is most severe in the perhaps more
common situation consisting of fairly poor intercluster
separations. The less well separated the clusters are,
the more likely it is that different clustering algorithms
will generate different clustering outcomes (method-
ological bias). It is also more likely that the inclusion
of relevant but redundant information, which exag-
gerates one characteristic dimension relative to the
others, will also have a substantial impact on the out-
come, no matter which algorithm is employed (infor-
mation bias).

We may have no idea how one variable should be
scaled relative to the others, so we often scale them all
to equal variance and hope for the best. The idea behind
equal scaling, however, is that each variable represents
a unique and equally important contribution to the
cluster structure. If untrue, it may indeed be advisable
to assign different weights among the variables, but
this should be done intentionally, not inadvertently
through the inclusion of redundant variables.

For the Euclidean metric, the basic problem may be
demonstrated with a simple example, recalling that a
variable’s average influence in determining object dis-
similarity is largely determined by its relative variance.
Say equally scaled variables X, and X, jointly describe
a particular cluster structure. Now consider adding to
the dataset another similarly scaled variable X; that is
highly correlated with one of the original variables (say
X1). Including this variable essentially inflates the vari-
ance associated with the information provided by X|,
rendering that variable more influential in determining
the clustering outcome. In the most extreme case, X3
= X, and thus the X; information is completely re-
dundant. The inclusion of X3 in this case is equivalent



NOVEMBER 1993

to doubling the variance—and the influence—of vari-
able X, resulting in a distortion of the cluster structure
in the dimension defined by that variable, a distortion
that might be critical if the clusters are not truly well
separated.

How might information bias be eliminated? Super-
ficially, it might appear that there is no redundant in-
formation in a dataset consisting of mutually uncor-
related variables, such as those obtained by a PCA on
the original correlated variables, but this cannot be
guaranteed and depends upon the distance metric and
component scaling employed and whether or not the
analysis was truncated. Suppose the three variables X,
X>, and X3, including the latter redundant variable,
are subjected to a PCA and variance-weighted scores
for the three new, uncorrelated component variables
are obtained. As noted in section 3b, if all of the com-
ponents are retained, the Euclidean distance matrix
computed from the PCs is identical to that constructed
from the original variables. Therefore, if redundant in-
formation exists in the original dataset, it szl exists in
the component dataset, despite the fact that the new
component variables are uncorrelated. Therefore, the
lack of correlation is no guarantee of the absence of
redundancy.

If the true cluster space embedded in the data has
fewer dimensions than the number of original variables
included in the analysis, then there exists irrelevant or
redundant information among the variables, and thus
the dimensionality represented by the original variables
must be reduced or constrained in some fashion. If
PCA is employed to preprocess the variables, this
means that the analysis must be truncated. Yet, when
variance-weighted scores are used, truncation to the
number of truly relevant dimensions (two, in this ex-
ample) cannot guarantee that the redundant infor-
mation associated with variable X3 has been eliminated.

Say variables X; and X, are uncorrelated and have
unit variance. The original variables already represent
a principal components solution, so one may let Z,
= X and Z, = X;,. The addition of completely redun-
dant variable X3 to the dataset means that now three
component variables can be constructed, Z T, Z ¥, and
Z %, but as variables X, and X; are perfectly correlated,
the third eigenvalue, and thus the variance of com-
ponent variable Z ¥, is identically zero. The variance
of X; augments that of X, giving the component vari-
able Z T larger variance and greater influence than that
of component variable Z 5 . If the variance of X3 is also
unity, then the variance of Z ¥ is double that of Z 5,
and so original variable X; is still effectively and in-
advertently given double the weight. This analysis could
be truncated to the proper number of dimensions, two,
but doing so has no effect in this example because the
third component, having zero variance, does not con-
tribute to the interobject distances anyway.

The utilization of untruncated standardized com-
ponent scores does not solve this problem either and
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indeed could make matters even worse. Suppose X3 is
very highly, but not perfectly, correlated with .X;, and
the difference between them represents only random
measurement error that is irrelevant to the embedded
cluster structure. The additional eigenvalue created
when X; is added to the dataset is very small, but not
identically zero, and largely represents the random re-
sidual. Standardized scaling of the components treats
all component variables equally regardless of the vari-
ance of the original variables they explain and as a
result exaggerates the influence of a component variable
that in this case represents only random, useless noise.

Therefore, this strategy requires truncation as well,
but the choice of the truncation point in a standardized
PCA approach is even more problematic. As noted
earlier, many applications result in the bulk of the
original variance being concentrated into a relatively
small number of components. When the component
scores are variance weighted, exclusion of the smaller
components may—in an ideal case—have relatively
little effect on the Euclidean interobject distances, but
this is something that should be confirmed (see next
subsection ). Thus, in an ideal case, the Euclidean dis-
tance matrix may converge rapidly toward some stable,
final configuration (given by the distances computed
using the full set of original variables) as additional,
but smaller, components are retained, which would
make the choice among different truncation levels less
onerous. However, we argued above that if the original
variables contain redundant information, then the so-
lution being converged upon is not the desired one.

In contrast, when standardized scores are used, there
is little hope of rapid convergence toward the final con-
figuration, which in this case is the Mahalanobis dis-
tance matrix of the original variables (and still not nec-
essarily the desired solution). Changing the truncation
level can have a first-order effect on the distance matrix
generated, and thus the clustering outcome. In addi-
tion, there may be no single obvious truncation level.
There are many available strategies (stopping rules for
PCA) for determining truncation points in PCA, but
these may not result in a satisfying consensus (see
Jackson 1991, p. 56, for an example ). Indeed, as many
are based on the relative sizes of the eigenvalues, they
will be influenced to a perhaps significant degree by
the presence of redundant variance, especially if it
chiefly contributes to the larger variance components.
We consider this a very serious deficiency of using
standardized scores.

2} THE PRESENT SOLUTION

This study employs 24 temperature and precipitation
variables. Information bias owing to redundancy is a
concern as some of the correlations are extremely high.
Further, the 12 temperature variables tend to be more
intercorrelated than the precipitation variables. Of the
66 possible pairs of the 12 temperature variables, 25
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pairs have correlations > 0.96, with the highest cor-
relation (between December and January) being
0.9973. Of the 66 pairs of precipitation variables, how-
ever, only five correlations exceed 0.96. If all the orig-
inal variables are used, temperature as a data type
would be more influential, even if the two types are
similarly scaled.

We do not presently have a satisfying solution to
the redundancy problem. The procedure adopted in
this study utilizes truncated PCA on the original vari-
ables using standardized component scores. The adop-
tion of this procedure was motivated by the following
example, which uses a subset of our climate dataset for
simplicity of presentation, and represents a practical
demonstration of the simple example used above.
However, we do feel that other approaches should be
considered in the future, especially because of the
truncation problem.

Two moderately correlated (r = 0.48) variables,
January temperature and precipitation (denoted T1
and R1), were selected. For this example, the variables
were each standardized to unit variance. A plot of the
two variables (not shown) evinces clumping, but few
very well separated clusters, so this would be expected
to be a stressful test. The variable correlation matrix
has eigenvalues of 1.48 and 0.52. Varimax orthogonal
rotation of the component eigenvectors generated two
new component variables, each accounting for one unit
of variance. The first PC (PC1) loaded strongly on
temperature (loading 0.97) and weakly on precipitation
(loading 0.25); the second PC’s eigenvector loadings
were opposite. These components might be termed
temperature and precipitation dimensions, respec-
tively.

The Euclidean metric was then used to create the
object distance matrix from the standardized scores.
The secondary rotation was actually unnecessary, and
had no effect on the distances. Indeed, the same dis-
tance matrix could have been constructed by applying
the Mahalanobis metric on the original variables. Fig-
ure 2a shows the result of an average linkage clustering
of these standardized scores. The pseudostatistics dis-
cussed earlier suggested the 11-cluster solution shown,
among other possibilities. This is taken to be the “cor-
rect” solution.

Next, we attempted to bias or “contaminate” the
outcome toward the temperature dimension by in-
cluding a third variable, standardized February tem-
perature (T2), which is very highly correlated (r
= 0.991) with T1. The difference between these two
variables is small but spatially systematic, and dem-
onstrates the effect of allowing clearly redundant in-
formation in the dataset. If the available distance mea-
sures possessed an extra sum-of-squares principle, the
effect of this new variable on the clustering outcome
might in fact be quite minimal.

The eigenvalues of the three-variable correlation
matrix were 2.3128, 0.6793, and 0.008. The additional
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eigenvalue created as a result of T2’s inclusion was
extremely small, owing to the very high correlation
between T1 and T2. The third component was dropped
prior to rotation; the untruncated case will be revisited
later. The truncation level is obvious to us only because
of the experimental design, and it is possible some
truncation test, responding to the redundant variance
associated with the first component, would recommend
deletion of the second component as well. After rota-
tion, variable T2 folded primarily into the first PC along
with January temperature T1. Rotated loadings for the
first retained PC were 0.96, 0.24, and 0.98 for T1, R1,
and T2, respectively. Similarly, PC2’s loadings were
0.26, 0.97, and 0.21.

Average linkage clustering of the standardized scores
from the contaminated but truncated PCA proceeded
in a manner very similar to that of the correct solution.
Figure 2b identifies the discrepancies between the cor-
rect and contaminated clusterings at the 1 1-cluster level
and shows that 12 of the 344 climate divisions were
differently assigned. Since these were located primarily
at the boundaries of the clusters, which should not be
considered truly “hard” anyway, agreement should be
considered very good. Note that the contaminated so-
lution did incorporate some additional information
that was not available to the “correct” model. Still,
because of the very high correlation between T1 and
T2, the amount of extra information must be quite
small.3

The experiment was repeated, using the original
variables. The Euclidean distance matrix was com-
puted using original correlated variables T1 and R1.
Recall that the identical matrix could be constructed
from an untruncated PCA if the component variable
scores are variance weighted. The average linkage
clustering is shown in Fig. 3a. Pseudostatistics sug-
gested a 10-cluster solution. The result is clearly very
different from that based on the standardized scores
in Fig. 2a (54 discrepancies between the two most
comparable solutions). This demonstrates the sen-
sitivity to the choice of the distance metric. Again,
if the Mahalanobis metric had been applied to the
original variables, the result would have been iden-
tical to the ““correct” solution.

Variable T2 was then added to the analysis. Average
linkage of the Euclidean distances computed from the
three raw variables (or, equivalently, the three variance-
weighted component variables from an untruncated
PCA) resulted in a radically different clustering from
that shown in Fig. 3a. Cluster shapes and sizes were

3 A still more stressful test would be to include a redundant variable
that differs from T1 by a truly spatially random component. This
was found to result in a larger number of discrepancies, even when
the present approach of truncated, standardized component analysis
is adopted, indicating a shortcoming of the present approach. How-
ever, it is felt that the example discussed is more applicable to the
problems confronted herein.
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FIG. 2. Results from the test of information bias using a subset of the climate dataset and preprocessed with principal
components analysis. (a) The “correct solution™ at the 11-cluster level; (b) discrepancies (shown in black ) between the
correct and contaminated clusterings at the 11-cluster level.

©

substantially changed and shifted in space as well. This
makes sense because the effect of including T2 was
essentially to exaggerate the variance and influence of
variable T1 relative to R1 in determining object dis-
similarity. The discrepancy map for the two most sim-
ilar raw variable clusterings is shown in Fig. 3b. A total
of 193 divisions, principally located in the Northeast
and Midwest, were found to have changed cluster

memberships as a direct result of the addition of the
redundant variable (Fig. 3b).

The third component variable created from the in-
clusion of T2 in the analysis possessed very small rel-
ative variance (0.008) relative to the other two com-
ponents. It might be expected, then, that the deletion
of this component would have relatively little effect on
the result. To test this assumption, another clustering
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FIG. 3. As in Fig. 2 but when raw data are used with Euclidean distances. (a) The reference raw data solution with
10 clusters; (b) discrepancies (shown in black) between this reference solution the most comparable contaminated
clustering, at the ! 1-cluster level.

was generated using a Euclidean distance matrix con- weighted scores with truncation to the expected number
structed with only the first two variance-weighted of dimensions of the cluster space. This clustering was
component variables. This represents an application compared to that shown in Fig. 3a. A total of 139 dis-
of PCA preprocessing for the generation of variance- crepancies were found (not shown) between the two
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most comparable solutions, despite the small variance
of the deleted component variable. This indicates that
the convergence discussed earlier may not be as rapid
as expected, especially if the number of original vari-
ables is rather limited.

Finally, we compare the clustering outcomes be-
tween the two- and three-variable datasets when the
Mahalanobis metric is employed. This method is the
same as comparing two untruncated PCA processed
datasets when standardized scaling is adopted; that is,
the “correct” solution with what would have been ob-
tained if the third component had not been deleted
prior to the clustering that generated the discrepancy
map shown in Fig. 3b. These were the least comparable
solutions of all, being so different that no meaningful
discrepancy map could be constructed. Thus, as ex-
pected, truncation is even a more severe problem when
the scores are standardized. In this example, the dif-
ference between variables T1 and T2 was considered
to be irrelevant information or noise, and employing
the Mahalanobis metric effectively elevated this noise
component to have equal influence with the other, im-
portant components.

If the dataset is suspected to contain redundant in-
formation, then the conclusion drawn from this ex-
periment is that truncated PCA preprocessing followed
by standardization of the component scores did the
best job of removing the redundancy of the prepro-
cessing methods considered herein. This is the strategy
adopted for the reference clustering (section 5).

3) THE DANGER POSED BY INDISCRIMINATE
TRUNCATION

In the foregoing, it was assumed that the originally
identified variables mainly contain relevant, if repeated,
information. If any truly irrelevant information exists
(such as the difference between variables T1 and T2,
which was considered noise for the purposes of the
above experiment), then PCA will channel it into the
small variance components likely to be deleted prior
to the construction of the distance matrix. However,
if the dataset contains truly irrelevant variables, the
problem considered by De Soete (1986 ), and if further
the “‘signal variance” (information about the true clus-
ter structure) is exceeded by the ‘“noise variance”
(contributed by the irrelevant information), then it
may indeed be the signal that passes into the small
components routinely marked for removal. Chang
(1983) presented an example where this did occur, and
suggested making pairwise plots of the component
scores to subjectively verify that the deleted compo-
nents do not contain any distinctive clusters that might
be indicative of the true latent cluster structure.

5. Results using the reference clustering procedure

In this section, the results of the “reference clustering
procedure,” representing the analysis strategy presently
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believed to be best, will be presented and analyzed. In
the following section, alternative clusterings that are
obtained when different choices or decisions are made
in the handling of the dataset will be discussed to assess
sensitivity to biases and the robustness of the clusters
identified in the reference solutions.

a. Data issues

In most of the cluster analyses to follow, one climate
division suspected of being a particularly bad data point
(in the northwest corner of South Carolina) was deleted
from our dataset prior to data preprocessing (if any)
and clustering, * leaving 343 objects in the dataset. For
our reference clustering solutions, the variables were
standardized by data type. The grand mean and vari-
ance of 12 temperature variables taken together were
used to transform these variables. The same was done
separately to the 12 precipitation variables. This elim-
inates the scale difference between the temperature and
precipitation measures but preserves the natural vari-
ability through the year that is part of the seasonal
cycle and thought to be valuable information for the
clustering.

b. The PC analysis

For the reference strategy, the variables are subse-
quently processed using PCA on the variable covari-
ance matrix. PCA was chosen instead of common fac-
tor analysis because the primary goal is to reorder the
information among the variables; we do not wish to
assume or extract causal factor structure. The total
variance of the 24 variables equals 14.6. The variances
of the precipitation variables definitely exceed those of
the temperature variables (see Table 1), so using co-
variances instead of correlations in the PCA gives the
former greater weight. It is reported later (in section
6d), however, that this decision had little practical effect
on the clustering outcome, partly because we stan-
dardized the component variables we retained to unit
variance prior to generating the distance matrix.

The first three components, having eigenvalues of
8.75, 3.01, and 1.92, account for 94% of the total vari-
ance (13.7/14.6). The next two eigenvalues are much
smaller (0.35 and 0.33), and found to be statistically
indistinct, which means they should be retained or ex-
cluded as a set (North et al. 1982). In this case, the
truncation level might be thought to be fairly obvious,
but since the choice of the truncation level has such a
significant effect on the clustering outcome, especially
when standardized scaling for the variables is adopted,
a number of different truncation tests were applied.

4 The influence of this division on the results of the reference clus-
terings is discussed in section 6c. Deletion of this division had no
impact on the TI-R1-T2 example in section 4, so it was retained in
those clusterings.
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TABLE 1. PCA analysis for the reference clustering strategy. Total variable variance: 14.61. Variance retained: 13.67 (93.6%).

Rotated loadings

Fraction of variance

Variable Variance PCl1 PC2 PC3 PC1 PC2 PC3 Total

T1 0.48685 0.64481 0.23691 0.01992 0.85402 0.11529 0.00082 0.97012
T2 0.45512 0.63604 0.19909 -0.02703 0.88887 0.08709 0.00161 0.97757
T3 0.35402 0.57115 0.15211 0.04066 0.92145 0.06535 0.00467 0.99147
T4 0.23927 0.46491 0.07646 0.10611 0.90334 0.02443 0.04705 0.97483
TS 0.17279 0.37791 0.02991 0.13921 0.8265 0.00518 0.11216 0.94383
T6 0.15258 0.33429 —0.01264 0.14909 0.73241 0.00105 0.14568 0.87914
T7 0.10838 0.27876 —0.0494 0.08921 0.71695 0.02252 0.07342 0.81289
T8 0.11942 0.3029 —0.0273 0.09622 0.76832 0.00624 0.07752 0.85209
T9 0.16504 0.37974 0.03573 0.10606 0.87372 0.00774 0.06816 0.94961
T10 0.1817 0.40489 0.05967 0.09732 0.90225 0.01959 0.05213 0.97397
Ti1 0.26354 0.4768 0.14549 0.09486 0.86261 0.08032 0.03414 0.97707
Ti2 0.38148 0.57624 0.19736 0.03395 0.87043 0.10211 0.00302 0.97556
R1 1.47661 0.19506 1.19117 0.06845 0.02577 0.96091 0.00317 0.98985
R2 1.07957 0.26891 0.98223 0.14127 0.06698 0.89367 0.01849 0.97913
R3 1.20887 0.27921 0.96033 0.37052 0.06449 0.7629 0.11356 0.94095
R4 0.68562 0.14666 0.57858 0.49408 0.03137 0.48825 0.35605 0.87567
RS 0.6259 0.13548 0.25725 0.64273 0.02933 0.10574 0.66001 0.79508
R6 0.72143 0.07415 0.07914 0.80779 0.00762 0.00868 0.90448 0.92078
R7 1.05148 0.33808 0.18449 0.89922 0.1087 0.03237 0.76901 0.91008
R8 0.80916 0.25437 0.11444 0.80731 0.07996 0.01618 0.80545 0.9016
R9 0.70455 0.26748 0.23701 0.70826 0.10155 0.07973 0.712 0.89328
R10 0.4887 0.05332 0.50862 0.32928 0.00582 0.52936 0.22187 0.75705
R11 1.043 0.00582 0.98397 0.17549 0.00003 0.92827 0.02953 0.95783
R12 1.6353 0.14403 1.26228 0.05794 0.01269 0.97435 0.00205 0.98909
Variance explained 3.16 6.83 3.68

Fraction of total 0.22 047 0.25

Column 1: letter symbols “T” and “R” refer to temperature and precipitation, respectively, and number indicates month of the year.
Variables were transformed by data type to zero mean and unit variance. Column 2: variance of each individual variable. Columns 3-5:
Varimax rotated loadings for three retained PCs. Columns 6-8: fraction of original variable variance accounted for by the PCs. Column 9:
fraction of original variable variance accounted within the three retained PCs.

Recall from section 4b, however, that any test based
on eigenvalue size is prone to being influenced by the
presence of redundant variance.

The imperfect but widely used average root test sug-
gests retaining three components. Jolliffe (1972) rec-
ommended using 70% of the average root, but this does
not alter the conclusion. An asymptotic application of
“Rule N” (Preisendorfer 1988) also suggests keeping
three roots. This recommendation is not changed even
when the effective number of objects is halved to com-
pensate for considerable spatial autocorrelation among
the objects. However, our data are nonnormal, which
degrades the test (Preisendorfer 1988). The “scree test”
consists of plotting the eigenvalue magnitude versus
rank and looking for natural breaks or “elbows” in the
plot. Using Cattell and Jasper’s suggested interpretation
(see Jackson 1991, p. 45), five or six components might
be retained, but this would also include the poorly sep-
arated fourth and fifth PCs. Velicer’s (1976) test sug-
gests that seven components be retained, which seems
excessive.

For the reference procedure, the three most signifi-
cant components were retained. Varimax orthogonal
rotation was then applied to enhance interpretation,
but had no effect on the interobject Euclidean distances.

The rotated component loadings are reported in Table
1 (the ordering is truly unimportant because standard-
ized scores were generated anyway ). The component
called PC1 captures most of the original variance of
the temperature variables, and accounts for 22% of the
retained variance. The other two components together
explaining the bulk of the retained variance (47% and
25%, respectively ) loaded highly on precipitation, with
PC2 representing the seven months encompassing the
winter season and PC3 capturing the remaining five
months including summer. Standardized component
scores were then calculated for the three rotated com-
ponents, and the spatial distributions of these scores
are presented in Fig. 4. Thus, within the context of the
discussion of section 4c¢, we are searching for clusters
embedded within an equally scaled three-dimensional
space defined by the components: one influenced by
temperature (PC1), one dominated by cool season
precipitation (PC2), and one largely constructed from
warm season precipitation (PC3).

Alternatively, the five largest components, and thus
98% of the original variance, could have been retained,
creating a five-dimensional cluster space. However, af-
ter rotation, the fourth and fifth components possessed
only one sizable loading each (both in precipitation,
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in May and October, respectively), and represented
only 2.8% and 2.3% of the original variance. Retention
of two additional components prior to rotation resulted
in only small changes in the composition of the three
largest components.

Owing to the concern expressed in section 4c(3),
pairwise plots of all 24 PCs from untruncated PCAs
(with and without rotation) were examined to see if
there was any obvious information contributed by the
smaller variance components marked for deletion. The
majority of the plots involving deleted components re-
vealed no convincing clustering or clumping. Plots
pairing the largest variance components (shown later)
did show such clumping, but as expected, suggested
that most of the embedded clusters are not particularly
well separated. A case might be made for retaining ad-
ditional components, but the decision is unfortunately
subjective. Still, the clustering outcome obtained with
the first five components is discussed in section 6b.

¢. The reference clustering solutions

Average linkage was applied to the distance matrix
constructed from the three standardized component
variables. It was decided to look for solutions with ap-
proximately a half-dozen, a dozen, and two dozen
clusters, as subjectively representing three different, but
potentially useful, levels of detail. The local peaks in
the pseudo-F and ¢? statistics, shown in Fig. 5, were
used to advise on specific clustering levels in those
neighborhoods. The 25-, 14-, and 8-cluster solutions
were chosen. Based on these statistics, other clustering
levels could have been picked. The 25-cluster level was
chosen over the 22-cluster solution, for example, since
it retains greater detail in the western United States.
The peaks in the pseudostatistics at 8 clusters were es-
pecially prominent as the next step involved the fusion
of two very large clusters.

Below, the 14- and 25-cluster solutions are presented,
and the 8-cluster regionalization is briefly discussed.
The 14-cluster solution is shown first, not because it is
superior to the other two, but because by itself it rep-
resents a compromise between the greater generality
of the 8-cluster solution and the more complex detail
in the 25-cluster result.

1) THE 14-CLUSTER SOLUTION

The solution at the 14-cluster level is shown in Fig.
6 and cluster statistics for the year and 4 three-month
“seasons” > are presented in Table 2. At this level, the
eastern United States is composed principally of three
spatially extensive clusters. One cluster claims the bulk
of the Southeast (except most of Florida), another

3 These data are provided for comparison purposes, but keep in
mind that the distance matrix was not computed from them.
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ranges zonally across the midsection of the country
(the East Central group), and the third extends along
the northern section (the Northeastern Tier cluster).
These are labeled clusters 1, 2, and 3 on the table; there
is no special significance to the ordering. The boundary
between the East Central and Southeast clusters is
nearly east-west and roughly follows the 36° latitude
circle. They differ chiefly in temperature characteristics
throughout the year, and the Southeast is also consid-
erably wetter in the winter months.

Later discussion will demonstrate that the region
occupied by the East Central and Northeastern Tier
clusters is the site of the least robust clusters in our
analysis. As they stand, the two clusters differ chiefly
in temperature throughout the year (Table 2), although
annual precipitation totals and the amplitude of the
seasonal cycle in precipitation (larger in the drier di-
visions of the tier) also differ. The tier cluster is spatially
noncontiguous; part of this is due to missing data in
southeastern Canada, the inclusion of which would be
needed for one test for latent bias in these clusters (sec-
tion 4b). Owing to the nature of hierarchical cluster
analysis, inclusion of Canadian data would likely have
a substantial influence on how the tier cluster grows,
and thus ultimately on the clustering solution as a
whole.

Two climate divisions have joined the tier, despite
being completely surrounded by divisions belonging
elsewhere, probably due to local topographic effects.
One is in New York, in the Adirondack Mountains,
and the other is in western South Dakota, encompass-
ing the Black Hills around Rapid City. The Adirondack
division represents a local maximum in surface ele-
vation, and is cooler than its surroundings, while the
Black Hills division is wetter than its immediate neigh-
bors. There is no reason to expect that clusters must
be spatially contiguous. If that characteristic is required,
then the clustering procedure must be constrained in
some fashion (Fovell and Fovell 1993).

The western portion of the United States is domi-
nated by one spatially extensive cluster (#4), whose
peripheral members are located in Nevada, eastern Or-
egon and Washington, the western plains, and northern
Arizona and New Mexico. This Interior West cluster
would likely have spread northward into Canada had
data been available there. Table 2 shows that, in the
mean, this cluster tends to be dry throughout the year
and also does not experience a wide seasonal swing in
precipitation like those clusters to the east. In the next
subsection, the reason for the latter, perhaps counter-
intuitive, characteristic is examined.

Within this giant cluster, there are members of a
spatially discontinuous group (cluster #10) bringing
together much of Idaho with western Wyoming, por-
tions of Oregon and Washington (on the eastern slopes
of the Cascades), and extreme northeastern California
(east of the Cascades and Sierra Nevada mountains).
Most of these divisions are characterized by having
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FIG. 4. Spatial distribution of the scores of the three retained components in the reference PC analysis, after Varimax orthogonal rotation.
(a) PCI1 scores; (b) PC2 scores; (¢) PC3 scores. Contour interval = 0.3 in (a) and (b), 0.5 in (c). Locations of division centroids are

indicated by plus marks.

higher average elevations than the members of the In-
terior West cluster. Generally, members of this high-
elevation West cluster are wetter, particularly in winter,
than the Interior West as a whole. The member in
northeastern California seems to have the least in com-
mon with the other members of this group and may
have joined only because it resides in a sharp winter
season transition zone between the much wetter divi-
sions closer to the coast (like the Sacramento valley)
and the much drier divisions to the east (in Nevada).

Cluster #5 comprises much of Texas and western
Oklahoma. South of the Interior West cluster is a group
composed of the divisions in the desert Southwest
(cluster #6), stretching parallel to the Mexican border
from eastern California to western Texas. Most of
Florida resides in cluster #7, except for the Florida
Keys, which has joined cluster #8, the other members
of which are located in southern Texas. The remainder
of California is divided into southern (#9) and northern
(#11) sections at the latitude of San Francisco. The

subdivision of California is not particularly satisfying,
even at more detailed clustering levels. This is due to
the poor resolution of the NCDC dataset in this region,
which fails to separate the Central Valley from the
western slopes of the Sierra Nevada mountains.
Better resolution exists in the Pacific Northwest
where the smallest clusters, in terms of areal extent and
cluster membership size, are found. The northern Cal-
ifornia cluster also includes one division in the Pacific
Northwest, the Puget Sound lowlands division in which
Seattle, Washington, resides. Cluster #12 joins two di-
visions in Washington, one on the coast and the other
along the west face of the Cascade range, both of which
receive considerable winter precipitation. Cluster #14
in Oregon mimics this cluster. Cluster #13 joins the
Washington and Oregon divisions in the lowlands west
of the Cascades, which are somewhat drier. A division
located in the northeast tip of the Olympic peninsula
in Washington, which is in the winter rain shadow of
the Olympic range, joins with the Interior West divi-
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(b)

F1G. 4. (Continued)

sions in cluster #4. As it stands, this region has claimed
a disproportionate share of the clusters at this clustering
level. If resolution were improved in other areas, es-
pecially the Interior West region, the solution shown
would likely look rather different at this same level.

2) THE 25-CLUSTER SOLUTION

In the discussion of the more detailed 25-cluster so-
lution, shown in Fig. 7, reference will be made to the
14-cluster solution, as the former can be considered as
depicting the subclusters contained within the latter.
The first six clusters listed in Table 2 are subdivided.
In addition, two isolated (single member) clusters, in
western Wyoming and the Florida Keys, exist at this
clustering level. The Southeast and giant Interior West
clusters are further partitioned into four and three sub-
sections, respectively. Two of the Southeast’s subzones
reside along the coast. The members of the Gulf and
Atlantic Coast subzones are characterized by being
warmer and wetter in the summer than the other

members of the Southeast cluster, and the two subzones
merge at the 22-cluster level. The Atlantic subzone
consists of only three divisions, but these tend to be
drier than their Gulf counterparts, particularly in the
cooler months.

The remainder of the Southeast cluster has also been
separated into two subzones. One occupies the central
portion of the original cluster. The other is a spatially
discontinuous zone residing on the western and eastern
flanks of the central subzone, and consists of divisions
in eastern Texas and Oklahoma as well as several in
Georgia and the Carolinas. The distinction between
these two subzones is in precipitation. The members
of the central subzone receive more rainfall throughout
the year, especially in the winter and spring seasons.
The two subzones together, however, receive substan-
tially less precipitation in summer than the members
of the Gulf and Atlantic subzones. The two subzones
merge at the 21-cluster level, and join with the coastal
subzones, forming the Southeast cluster, at the 15th
step.
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One of the difficulties in using cluster analysis is that
cluster fusions can create new groups that, due to av-
eraging, fail to carry forward some characteristics of
their constituent members. This is part of the inevitable
loss of information or detail. The consequences of a
particular compromise between detail and generality
is particularly well illustrated by the Interior West clus-
ter in the 14-cluster solution. The statistics in Table 2
show that this cluster has but a very small amplitude
annual cycle in precipitation, but this is misleading.
At the 25-cluster level, the Interior West region is sub-
divided into three subclusters, each roughly aligned
north-south, which partitions the cluster into western,
central, and eastern subzones. The eastern and central
subzones merge in the next (24th) step, and the western
portion joins them at the 17th step.

Statistics for these subclusters are presented in Table
3. The western subzone has a relatively wet winter and
dry summer, but the eastern subzone has the opposite
tendency. After their merger, these two tendencies
substantially cancel each other. Still, the members of
the Interior West cluster are more similar to each other

than they are to members of other, distant clusters,
demonstrating that despite the loss of information, this
particular grouping is justifiable at the less detailed level
the 14-cluster solution represents. Note that Table 3
shows that the divisions in the central subzone have,
on average, fairly uniform precipitation through the
year. Thus, this subgroup represents a transition zone
between the other two subzones, and is most similar
to the Interior West cluster as a whole.

In the 25-cluster solution, both the East Central and
Northeastern Tier clusters have been divided into
western and eastern subzones. The subzones of the East
Central cluster join at the 20th step, and the fusion
forming the Northeastern Tier occurs in the next step.
Statistics for these subzones are presented in Table 4;
note that the eastern subzone of the tier has only six
members. The chief difference between the western and
eastern sections in both clusters is in cool season pre-
cipitation, which is smaller in the west. In the reference
clustering, the subzone pairs later fuse owing to their
similarity with respect to PC1. As noted above, how-
ever, the East Central and tier clusters are the least
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FIG. 5. Graph of pseudo- F (indicated by squares) and 2 (indicated
by diamonds) statistics each step near the end of the clustering pro-
cedure for the reference clustering. The 12 value plotted is the change
in the value of this statistic between steps.

robust of those formed in the 14-cluster solution. In
some of the variant clustering solutions, including two
to be described below (in sections 6b and 6c¢), the west-
ern and eastern zones of each cluster fuse instead, in-
dicating that cool season precipitation information (i.e.,
PC2) held sway in those instances. This results in a
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radically different partitioning of the Northeast quad-
rant at a less detailed clustering level.

3) THE 8-CLUSTER SOLUTION

In the steps between the 14- and 8-cluster solutions
(not shown), the Northeastern Tier cluster joins the
East Central group, the situation in the Pacific North-
west simplifies with the merging of clusters #11 and
#13 and also #12 with #14, southern California joins
with the desert Southwest, the central and southern
Texas clusters fuse, and cluster #10 joins the Interior
West cluster, which surrounds it. Subjectively, it is felt
that this solution sacrifices too much detail, but serves
to illustrate how the clustering evolves further toward
the terminal single-cluster solution.

d. Distinctiveness of the clusters in the 14-cluster
solution

Clusters have been generated from the data, but how
truly distinct and different are they? The less distinct
they are, the more likely that they would fail to survive
perturbations in the analysis procedure. Despite the
nonrandomness of the cluster selection process, ¢ tests
were applied to differences of component score means
for pairs of clusters (with more than two members)
formed in the 14-cluster solution. These tests indicated
that each cluster was statistically different at the 99%
level for at least one of the three component variables.

] M
] 42
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(Southeast)
(E Central)
(HE Tier)

(Interior W)
#5 (Central TX)
[E5E] #6 (Southwest)

#7 (Florida)
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¢ SN ; [[II1]]| #o ¢S0. calif.)
7 S <~ NN #10 (High West)

7 ¢
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= #12 (VA W Slps)

[]I[][[] #13 (WA/OR Fthls)

== #14 (or ¥ s1ps)

Reference Clustering Solution

{14 cluster level)

FIG. 6. The reference clustering solution of the 343 climate divisions in the conterminous United States at the 14-cluster level.
(A division located in South Carolina was deleted prior to the analysis; see text.) Legend is keyed to Table 2.
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TABLE 2. Statistics for clusters identified in the reference solution.

Variable Mean Standard deviation Minimum Maximum
Cluster #1—Southeast (67 members)
TWIN 8.2 2.5 38 13.7
TSPR 17.3 1.6 13.8 20.5
TSUM 26.4 0.9 24.5 28.1
TAUT 18.1 1.5 15.5 21.6
TAVG 17.5 1.6 14.7 20.7
RWIN 334 7.5 10.7 42.2
RSPR 35.8 5.2 26.3 429
RSUM 348 7.3 234 53.6
RAUT 27.0 2.9 21.0 349
RTOT 131.0 14.8 84.8 163.6
Cluster #2—East Central (129 members)
TWIN -1.4 3.0 -7.3 4.2
TSPR 10.0 24 4.7 14.7
TSUM 223 1.9 18.1 26.0
TAUT 12.2 1.9 8.3 15.6
TAVG 10.8 2.2 6.3 14.8
RWIN 19.5 7.6 38 40.5
RSPR 26.9 4.6 16.9 38.5
RSUM 29.3 33 21.2 38.8
RAUT 23.1 4.5 8.9 31.7
RTOT 98.9 17.3 51.0 141.1
Cluster #3—Northeastern Tier (37 members)
TWIN -9.5 2.2 —-14.0 -3.8
TSPR 5.3 1.5 3.1 7.9
TSUM 19.7 1.5 17.0 22.0
TAUT 7.6 1.3 5.5 9.9
TAVG 5.7 1.4 3.5 8.1
RWIN 7.9 5.7 3.0 24.5
RSPR 17.3 4.5 10.0 25.8
RSUM 26.3 4.6 18.7 32.6
RAUT 15.4 6.6 6.9 29.2
RTOT 67.0 19.6 39.5 109.1
Cluster #4—Interior West (59 members)
TWIN : -2.9 2.9 -9.6 4.7
TSPR 7.3 2.1 2.1 11.0
TSUM 19.4 23 14.2 24.5
TAUT 8.8 1.9 4.3 12.7
TAVG 8.1 2.0 3.3 12.0
RWIN 7.6 4.9 2.4 23.4
RSPR 10.3 35 3.8 17.1
RSUM 10.6 5.1 33 22,0
RAUT 8.0 2.5 4.3 16.7
RTOT 36.4 9.9 18.8 59.3
Cluster #5—Central Texas/Western Oklahoma (12 members) ’
TWIN 5.2 35 1.3 12.5
TSPR 15.6 2.7 12.3 20.8
TSUM 26.8 1.5 235 28.6
TAUT - 16.7 2.5 134 21.6
TAVG 16.1 2.5 13.0 20.9
RWIN 79 4.6 3.0 17.2
RSPR 18.6 53 8.7 27.1
RSUM 20.4 24 17.5 254
RAUT 15.3 5.1 8.6 249
RTOT 62.2 15.0 38.8 86.8
Cluster #6—Southwest (13 members)
TWIN ’ 7.3 2.5 34 12.3
TSPR 159 2.2 13.1 20.6
TSUM . 26.8 2.3 24.1 31.8
TAUT 17.6 2.5 13.9 22.8
TAVG 16.9 2.3 13.6 21.9
RWIN 7.2 3.7 3.2 15.2
RSPR 4.6 20 1.6 7.8
RSUM 8.9 4.8 1.8 15.8
RAUT 6.8 2.6 3.0 11.0

RTOT 275 10.0 11.3 474
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Variable Mean Standard deviation Minimum Maximum

Cluster #7—Central and southern Florida (4 members)

TWIN 17.7
TSPR 22.4
TSUM 27.3
TAUT 23.9
TAVG 22.8
RWIN 16.6
RSPR 25.9
RSUM 57.6
RAUT 36.9
RTOT 137.0
Cluster #8—Southern Texas/Florida Keys (3 members)

TWIN 17.1
TSPR 23.7
TSUM 29.0
TAUT 24.1
TAVG 23.5
RWIN 10.7
RSPR 154
RSUM 23.6
RAUT 26.3
RTOT 76.0
Cluster #9—Central and southern California (3 members)

TWIN 9.4
TSPR 13.8
TSUM 20.9
TAUT 16.5
TAVG 15.2
RWIN 26.4
RSPR 12.7
RSUM 0.7
RAUT 8.0
RTOT 47.7
Cluster #10—High-elevation West (6 members)

TWIN -33
TSPR 5.2
TSUM 15.9
TAUT 6.9
TAVG 6.2
RWIN 28.3
RSPR 14.9
RSUM 7.7
RAUT 16.4
RTOT 67.2
Cluster #11—Northern California, southwest Oregon, and Puget Sound (4 members)

TWIN 5.1
TSPR 10.7
TSUM 18.9
TAUT 12.6
TAVG . 11.8
RWIN 45.7
RSPR 21.9
RSUM 5.1
RAUT 23.2
RTOT 95.9
Cluster #12—Cascades and Olympic west slopes (Washington) (2 members)

TWIN 2.2
TSPR 6.9
TSUM 14.4
TAUT 9.2
TAVG 8.2
RWIN 103.4
RSPR 50.5
RSUM 17.8
RAUT 65.4
RTOT 237.1

1.6
0.7
0.1
0.9
0.8

O AW O

15.9
21.6
27.3
229
21.9
12.9
24.1
54.8
317

132.0

13.6
22.5
28.6
22.5
22.1

8.6
13.5
17.0
17.8
583

73
13.2
18.2
15.6
14.2
23.9
11.3

0.6

6.4
42.4

—-8.5

14.0
4.0
2.8

18.5

12.2
3.9

10.9

52.8

39

9.8
16.8
11.0
10.5
38.5
19.4

2.5
18.4
8s5.1

—-0.6

14.0
7.6
6.5

100.6

48.6

17.5

63.8

231.0

19.5
23.2
274
24.8
23.7
19.5
29.8
60.7
49.0
149.9

21.4
249
29.6
26.1
253
133
17.9
36.0
38.9
106.2

11.2
14.4
23.5
17.6
16.1
29.0
14.2

0.8

51.0
-1.2

17.7
8.6
7.8

39.2

16.8

11.4

21.3

79.3

6.7
11.6
21.2
14.2
13.1
54.5
23.1
10.3
29.6

104.0

5.0
8.8
14.8
10.9
9.9
106.1
52.4

67.1
243.1
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Variable Mean Standard deviation Minimum Maximum
Cluster #13—Cascades and Olympic foothills (Washington and Oregon) (2
members)

TWIN 4.1 0.8 35 4.7
TSPR 9.6 0.6 9.2 10.0
TSUM 17.1 0.8 16.6 17.6
TAUT 11.1 0.9 10.5 11.7
TAVG 10.5 0.8 9.9 11.0
RWIN 62.0 53 58.2 65.7
RSPR 323 29 30.3 344
RSUM 11.5 4.0 8.7 143
RAUT 39.6 6.1 35.3 439
RTOT 145.5 18.2 132.6 158.4
Cluster #14—Cascade and Olympic west slopes (Oregon) (2 members)

TWIN 4.4 3.5 1.9 6.9
TSPR 8.8 1.6 7.7 9.9
TSUM 16.0 0.7 15.5 16.5
TAUT 11.1 1.7 9.9 12.2
TAVG 10.1 1.5 9.0 11.1
RWIN 85.5 7.7 80.0 90.9
RSPR 44,0 2.0 42.6 454
RSUM 10.9 1.2 10.0 1.7
RAUT 48.9 2.3 47.3 50.5
RTOT 189.2 10.7 181.6 196.8

Note: Temperatures (7)) are annual and seasonal averages (degrees Celsius); Precipitation values (R) are annual and seasonal accumulations

{cm).

The degrees of separation among the clusters can be
better judged from Fig. 8, which shows pairwise plots
of the scores of the three component variables. The
panels are plots of (a) PC1 versus PC2, (b) PC1 versus
PC3, and (¢) PC2 versus PC3. The letter symbols in-
dicate cluster membership (“A” = cluster #1/South-
east; “B” = cluster #2/East Central, etc., in the order
presented in Table 2). All three plots evince the
clumping remarked upon earlier.

In general, many of the clusters may be judged to
be poorly separated; this provides evidence that the
clusters should be allowed to overlap. In the pairings
of PC1 with PC2 and PC3, the Southeast cluster’s
members (“A’) stand apart from those of the East
Central, Northeastern Tier, and Interior West (“B,”
“C,” and “D”) clusters. The best separations between
the two Northeast quadrant clusters are seen in the
plots that include PCl1, average annual temperature.
Even so, the separation is not very substantial, and this
is undoubtedly one reason why those clusters are sen-
sitive to small perturbations that can alter the balance
among the component variables.

The Interior West, while relatively dry throughout
the year, is most distinct in the pairings involving PC3,
warm season precipitation. The hot and dry Southwest
cluster (“F”) is especially distinct in Fig. 8b. The
smaller clusters, such as those in Florida (“G” and
“H”), southern California (“I”’), and the Pacific
Northwest clusters (“K” through “N”’), are well sep-
arated from the pack on all three plots. Their within-
cluster variances are large, but not when compared to
their between-cluster separations.

e. Comparison with the Koeppen climate
classification

As discussed in the Introduction, the Koeppen sys-
tem is typical of climate classifications that consist of
a set of rules that are applied to data (in this case,
subsets of our temperature and precipitation data) but
were not specifically constructed from those data. One
version of the Koeppen rules has been applied to the
NCDC dataset, yielding the map shown in Fig. 9. Often,
high-elevation locales are collected together into a gen-
eral “highland” climate group rather than given specific
classifications. For ease of comparison with the refer-
ence clusterings (both the 14- and 25-cluster levels, as
appropriate), this has not been done. The major
Koeppen climate groupings are identified by letters: A
(tropical), B (arid), C (temperate ), D (cool or snow),
and E (frigid or ice). There are no examples of the E
class in the data domain. The B climates are further
divided into steppe (BS) and desert (BW) subtypes.
The lowercase letters fand s refer to locales that have
sufficient precipitation in all months and those that
have dry summers, respectively. The lowercase letters
a and b are used to differentiate between places with
warmer and cooler summers. Several differences be-
tween the classification shown in Fig. 9 and typical
Koeppen maps are noted in the caption. None are
judged to hinder the comparison.

The Koeppen system divides the eastern United
States into four principal, zonally aligned groups. From
north to south, these are the Dfb, Dfa, Cfa, and A zones,
with the latter zone located in southern Florida. A few



NOVEMBER 1993

b+

! 4

r
r.u

Emspasniusys nbnm
-
mE g

EEsnsmsmhes gEam

T mnhym

.

EEEEEE ISR

mamm -

] by ~
.
s N’ 5

%_‘-:-'u- b

3 e
l\:‘ 2|
s A
s
.

-

B peiea
|:| Isolate

FOVELL AND FOVELL

2125

(Southeast)
(E Central)
(NE Tier)
(Interior W)
(Central TX)

i /7 #8

K] #6
B v

(Southwest)
(Florida)
(8 TX/Keys)

X [T #o ¢so. calif.)
#10 (High West)
E=] #11 (Fo. Calif.)
E= #12 (VA ¥ Slps)

[MIY] #13 (®asor Fthis)

E=] #14 (OR ¥ slps)

—

Reference Clustering Solution

{25 cluster level)

FI1G. 7. The reference clustering solution of the 343 climate divisions in the conterminous United States at the 25-cluster level. Legend
depicts subzones relative to 14-cluster solution. Two isolated clusters exist at this level (in western Wyoming and the Florida Keys).

divisions in the Appalachians are classified Cfb, owing
to their cooler summers. The general distribution of
climate types (but not the specific boundaries) are
comparable to the clusters generated in the 14-cluster
reference solution (Fig. 6). The reference clustering,
however, gives precipitation more of a role in differ-
entiating among the clusters in the eastern region, par-
ticularly the subzones identified in the 25-cluster so-
lution (Fig. 7). The only Koeppen climate type to spe-
cifically involve precipitation is the B group. The
remaining groups are distinguished solely on the basis
of temperature.

In the Koeppen classification, the western United
States is dominated by one spatially extensive cluster,
the BS or arid steppe group, in much the same manner
as the reference clustering is dominated by the interior
West (and its subzones). The spatial extents of the BS
group and Interior West cluster are fairly similar, with
the exception that the former also includes much of
the lower-elevation Southwest, which in the reference
clustering remains separate (until finally joining at the
4-cluster level). Within the BS zone is a group of di-
visions that are assigned to the Dfb climate class. Many
of those same divisions also belong to the central sub-
zone of the Interior West identified in the 25-cluster
solution (Fig. 7). In the Koeppen scheme, the Dfb di-
visions located in the west are not distinguishable from
those residing along the U.S.~Canadian border, owing
to the scheme’s insensitivity to precipitation differences
among the nonarid classes. The statistics for compa-

rable zones in the reference clustering (the Northeast-
ern Tier cluster in Table 2 versus the Interior West
central subzone in Table 3) suggest that precipitation
is indeed the sole important distinction between them.

The Koeppen subdivision of the West Coast is sim-
pler than in the 14- or 25-cluster reference solutions.
This is because those divisions belong to the C and D
classes, and thus precipitation does not play a direct
role in the partitioning. A number of other discrep-
ancies can be noted. The main conclusion from this
comparison is that giving precipitation greater weight
in determining the boundaries of nonarid climate zones
can have a significant, and arguably beneficial, effect
on the resulting partitioning.

6. Variants on the reference analysis procedure

In this section, some other methods for conducting
the climate regionalization, employing different meth-
ods and data preprocessing strategies, are discussed.
Sensitivity of the results to the clustering method em-
ployed, the staple of cluster analysis sensitivity tests,
will not be specifically considered. The “best” results
were obtained with methods, such as average linkage,
that have some skill in uncovering compact but rela-
tively poorly separated clusters and are unbiased with
respect to cluster membership size.

A few of the variants will be described in this section.
As a group, these tests help assess how sensitive the
reference clusterings are to both minor and major al-
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TABLE 3. Statistics for the subzones of the Interior West cluster.

Standard
Variable Mean deviation Minimum  Maximum

Western subzone

(20 members)
TWIN —0.3 1.7 -2.5 47
TSPR 8.9 1.2 6.3 10.7
TSUM 20.0 1.8 15.3 22.8
TAUT 10.2 1.0 8.2 11.6
TAVG 9.7 1.0 7.6 11.1
RWIN 10.4 4.8 5.1 234
RSPR 8.3 3.1 49 17.1
RSUM 59 2.2 33 11.3
RAUT 8.1 32 4.3 16.7
RTOT 327 11.4 18.8 59.3
Central subzone

(17 members)
TWIN -5.1 1.8 -7.5 -1.1
TSPR 53 1.6 2.1 7.8
TSUM 17.1 1.5 14.2 20.2
TAUT 6.8 1.2 43 8.6
TAVG 6.0 1.3 33 7.7
RWIN 8.9 5.2 2.4 17.8
RSPR 10.1 3.0 5.2 17.1
RSUM 9.0 20 5.6 12.7
RAUT 8.6 2.9 49 14.3
RTOT 36.5 1.5 20.4 58.2
Eastern subzone

(22 members)
TWIN -3.5 2.8 -9.6 0.8
TSPR 7.3 1.7 5.2 11.0
TSUM 20.5 2.0 17.5 24.5
TAUT 9.2 1.7 6.7 12.7
TAVG 8.4 1.8 5.5 12.0
RWIN 39 1.1 2.7 6.8
RSPR 12.1 32 3.8 16.2
RSUM 16.2 2.9 12.2 22.1
RAUT 7.4 1.2 5.7 9.8
RTOT 39.7 5.1 32,0 50.8

terations in the analysis strategy. The 14-cluster solu-
tion resulting from the reference strategy will be used
as the basis of comparison. It is determined that the
Northeast quadrant, where the East Central and
Northeastern Tier clusters reside, is the most sensitive
region of the data domain. Below, a 14-cluster solution
using the raw data (which includes redundant infor-
mation) is presented for comparison with the reference
case. The problem of truncating the PCA analysis is
illustrated. The influence of the one deleted climate
division—located in northwestern South Carolina—is
demonstrated. The results of some other tests are briefly
described.

a. Clustering with the raw data

We preprocessed the raw dataset with PCA not for
reasons of economy but rather to eliminate redundant
information among the variables. We now present the
kind of clustering we would have found acceptable if
we were not concerned with information bias. The
variables were standardized by data type, as in the ref-
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erence case. The Euclidean distance was used. This
same solution could be obtained from an untruncated
PCA with variance-weighted scores.

There is a small peak in the pseudostatistics at the
14-cluster level, which is shown in Fig. 10, but this
level was chosen mainly for comparison with Fig. 6.
The clustering in much of the western half of the United
States is qualitatively comparable to the reference so-
lution. In much of this region, one data type (temper-
ature or precipitation ) tended to dominate. The eastern
half of the domain, however, is rather differently par-
titioned. Both temperature and precipitation partici-
pate in defining climate zones in this region. This clus-
tering finds no distinction between the Northeastern
and East Central divisions, which separated in the ref-
erence clustering. This cluster has a subcluster, which
joined in the 17th step, that resembled the Northeastern
Tier cluster of the reference case with respect to ori-
entation, but actually possessed only a few of the di-
visions that belong to the reference tier. Many of the
members of the reference tier were lost to the Interior
West, which extends much farther eastward. Discrep-
ancies between this and the reference clustering actually
increase as the clustering proceeds further. In the next
(13th) step in the present analysis, the central Texas/
Kansas cluster joins with the Northeast, creating a huge
entity that stretches in an arc from the Gulf of Mexico
to Maine. In the reference clustering, most of the di-
visions in that region later link up with the Southwest
instead.

It will be noted below (section 6d) that relatively
minor differences were found between the clusterings
of standardized PC scores that were generated by co-
variance- and correlation-based analyses. With raw
data, a somewhat analogous test is to compare the re-
sults from when the data are standardized by data type
(as in Fig. 10) with the clustering obtained after each
variable is standardized separately. That approach,
however, resulted in a clustering (not shown) that is
very different, understandable given the extreme sen-
sitivity of the Euclidean metric to scaling assumptions.
Because of this much greater sensitivity, as well as the
presence of redundant information, these raw data
clusterings are considered to be inferior to the reference
solutions.

b. Clusterings with additional retained PCs

In the reference analysis, we were faced with the in-
escapable problem of truncating the PC analysis. As
discussed earlier, cluster analyses in which different
numbers of components are retained may well be sub-
stantially different, especially when the component
scores are standardized. This might be called “PC
truncation bias,” clearly a component of information
bias, and represents the chief impediment to the usage
of PCA as a preprocessing tool.

Figure 11 shows the clustering that results when the
two next most significant PCs are retained in the anal-
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TABLE 4. Statistics for the subzones of the Northeast quadrant clusters.

Variable Mean Standard deviation Minimum Maximum

East Central cluster: Eastern subzone (101 members)

TWIN —1.1 3.0 =73 4.2
TSPR 9.8 2.5 4.7 14.7
TSUM 21.8 1.8 18.1 25.8
TAUT 12.1 1.9 8.3 15.6
TAVG 10.7 2.3 6.3 14.8
RWIN 224 5.5 10.6 40.5
RSPR 27.8 4.2 17.6 385
RSUM 294 33 22.1 38.8
RAUT 244 3.2 18.6 31.7
RTOT 104.0 13.8 73.3 141.1
East Central cluster: Western subzone (28 members)

TWIN -24 2.7 ~6.4 37
TSPR 10.7 1.8 7.7 14.2
TSUM 23.8 1.2 21.3 26.0
TAUT 12.4 1.6 10.1 15.3
TAVG 11.1 1.8 8.3 14.6
RWIN 9.1 4.2 38 20.1
RSPR 23.7 4.6 16.9 35.1
RSUM 29.2 34 21.2 333
RAUT 18.5 5.4 8.9 28.4
RTOT 80.5 16.5 51.0 113.9
Northeast Tier cluster: Eastern subzone (6 members)

TWIN -8.4 0.8 -9.8 -7.3
TSPR 3.8 0.6 3.1 4.8
TSUM 17.5 0.4 17.0 18.2
TAUT 7.2 0.5 6.6 7.8
TAVG 5.0 0.5 4.3 5.7
RWIN 19.4 4.0 13.8 24.5
RSPR 222 3.1 18.0 25.8
RSUM 28.3 2.4 24.1 31.0
RAUT 26.1 29 220 29.2
RTOT 96.1 11.9 81.4 109.1
Northeast Tier cluster: Western subzone (31 members)

TWIN -9.8 24 —14.0 -3.8
TSPR 5.6 1.4 3.1 19
TSUM 20.1 1.2 17.1 220
TAUT 7.6 1.4 5.5 9.9
TAVG 5.9 1.5 35 8.1
RWIN 5.7 2.1 3.0 10.0
RSPR 16.4 4.2 10.0 23.1
RSUM 25.9 4.8 18.7 326
RAUT 13.4 4.8 6.9 20.7
RTOT 614 15.3 39.5 83.6

ysis, bringing the total to five standardized variables.
The two PCs were added as a pair, owing to their in-
significant separation (North et al. 1982). The 14-clus-
ter solution shown was suggested by the pseudostatis-
tics. After rotation, these two PCs explain a total of
5.1% of the variance. Inclusion of PCs 4 and 5 means
more information, especially from the May and Oc-
tober precipitation variables, is retained in the com-
ponent dataset.

Some of the differences between this and the refer-
ence clustering will be examined, focusing mainly on
the smaller membership clusters for convenience. For
example, Fig. 11 shows that most of California is fused
into one cluster by this step. In the reference case,
southern California joins first with the Southwest.

Strong similarity with respect to May rainfall and sum-
mer temperature among the California divisions ap-
pears to have encouraged this combination. In a similar
fashion, three divisions in western Washington state
are merged. In the reference clustering, one of these
(in the northeast tip of the Olympic peninsula) was a
member of the Interior West cluster, owing to its rel-
ative dryness in winter compared with its neighbors.
In the summer and autumn seasons, this division is
more similar to its immediate neighbors. The identity
of a high-elevation West cluster that was similar to #10
in the reference case was lost much earlier in the clus-
tering process.

The Interior West cluster has lost the members in
Arizona and New Mexico that it possesses in the ref-
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erence case. Most of the divisions in the Northeast
quadrant have already been fused together at the dis-
played clustering level. The subzones of this cluster
(not shown) are substantially different from those in
the reference solution. The principal division is into
western and eastern subzones that meet in central Ohio.
These subzones merge at step 28, quite early in the
clustering process. A much smaller perturbation, dis-
cussed in the next subsection, also radically alters the
clusters forged in this region.

It 1s difficult to state that this clustering is inferior
to the reference case, because some of its different
combinations are logical. However, this clustering
demonstrates how changing the truncation level can
affect the outcome. Giving greater weight to one data
type or time period over another can alter or even
eliminate the less well defined clusters. We also per-
formed a clustering for which all 24 standardized com-
ponent variable PCs retained (not shown). An identical
result is obtained from the raw data when the Mahal-
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anobis distance is used. This clustering, however, re-
sulted in the production of one massive cluster that
grows by chaining and contains 312 members at the
14-cluster level, a disconcerting—and probably illog-
ical—result. The few divisions that remained indepen-
dent at that level were the obviously different divisions
in the dataset. It is possible that using the Mahalanobis
metric (with the raw data) obscured cluster distinc-
tiveness to the point where a cascade of chaining was
inevitable. Since this clustering contained redundant
information, and exaggerated useless information, it is

easier to believe that this is the result that is flawed and
not the reference clustering.

¢. Inclusion of the deleted climate division from
South Carolina

One division, located in the mountains in extreme
northwestern South Carolina, was clearly the most dif-
ferent and unique data point in the domain. Because
it is believed to be of suspect quality, it was deleted
prior to PC analysis in the reference case. When it is
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FIG. 8. (Continued)

retained, however, it has little apparent influence on
either the composition of the extracted components or
their scores. The component score distributions and
pairwise plots (not shown) are virtually identical to
those shown in Figs. 4 and 8. Furthermore, the division
in question remains an isolate in the clustering process
through to the very last step.

The division does, however, manage to induce a
substantial change in the clustering in the Northeast
quadrant of the United States. At the 15-cluster level
(now including the isolate division), the orientation

of the clusters formed in the northeast United States
is shifted 90°, from the zonal alignment they have
in the reference solution (Fig. 6) into an essentially
west—east partition (not shown). The remaining
clusters are unchanged at this clustering level. As in
the reference clustering, the Northeast quadrant is
divided into four subzones at an earlier stage in the
clustering. In this solution, however, the two western
subzones later merge to form a plains cluster, as do
the two eastern subzones, joining the Ohio Valley
with New England.
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Koeppen Classification of the NCDC Data

=7

BS BW Cfa
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FIG. 9. Koeppen classification of the NCDC climate division dataset. Locales normally assigned to the undifferentiated “highland” group
have instead been given the appropriate specific classification, for greater comparability with the reference clusterings in Figs. 6 and 7.
Compared to typical Koeppen system maps, the arid desert class (labeled BW) is much smaller in extent. Several western divisions were
found to be very close to the boundary between this and the arid steppe (BS) class. The class Csa division in central Arizona was just slightly
too wet to be placed in the BS class; the same holds for the two Cfb divisions in New Mexico. One division in North Dakota was actually

classified Dwb, but was included in the Dfb class for convenience.

Actually, the subzones themselves do not have pre-
cisely the same composition as they do in the reference
clustering. (Four divisions in Missouri and one in Wis-
consin, all located along the borders of the subzones,
have different subcluster memberships in this variant
than in the reference solution.) This small rearrange-
ment is sufficient to radically alter the form and sub-
stance of the more general partitioning of the quadrant.
The controlling distinction between the two Northeast
quadrant clusters in the 14-cluster reference solution
is in temperature. The west—east partition in this variant
clustering, however, favors cool season precipitation
information. Generally, temperature increases south-
ward throughout this quadrant while cool season pre-
cipitation increases eastward (see Fig. 4). Both ori-
entations can be rationalized, and the two different

partitionings are both found to be statistically different
from each other as well as from the remaining clusters.
Still, this underscores the lack of robustness that char-
acterizes the clusters of this quadrant, and can be in-
terpreted to represent what can happen when the subtle
balance between temperature and precipitation infor-
mation is altered in a region in which both are impor-
tant contributors to the results.

d. Some other sensitivity tests used in this research

Among the tests employed during this work are (no
clusterings are shown):

¢ Clusterings on data after interpolation to a uni-
form grid. The NCDC data were interpolated onto a
mesh with 2° resolution, consisting of 221 points. This
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Clustering of raw data, standardized
by data type

FIG. 10. Variant clustering using the raw dataset, at the 14-cluster level, for comparison with the reference solution in Fig. 6. The variables
were standardized by data type prior to the distance computations (see text). The suspect South Carolina division was deleted prior to

clustering.

is a check on latent bias in the dataset owing to the
spatially irregular distribution of climate divisions. The
clusterings produced from the gridded dataset are
somewhat different from those made originally, but
the major discrepancies can be attributed to the de-
graded resolution in the domain after gridding. No ev-
idence was found that the cluster anchors created by
average linkage (upon the original or uniformly gridded
datasets) were unduly influenced by the spatial distri-
bution of the data points. This may have been the case
since average linkage does not tend to be biased with
respect to cluster membership size.

e Preprocessing using correlation-based PCA.
Covariance-based PCA was used in the reference
analysis procedure in order to retain as much infor-
mation about the seasonal cycle as possible. How-
ever, the correlation-based PCA resulted in cluster-
ings that are quite comparable to the reference so-
lutions, even in the sensitive Northeast quadrant. The
major discrepancies between the two tend to reside
at cluster boundaries, particularly along the eastern
border of the Interior West (which accounted for 60%

of the 41 discrepancies found at the 14-cluster level ).
This demonstrates that the clusters should not be
truly hard and nonoverlapping anyway. One reason
for the lack of sensitivity to this decision is the fact
that we employed standardized scores. Variance-
weighted scores would have further amplified the in-
fluence of the precipitation components.

¢ Clustering on artificially generated “season” vari-
ables. Before processing with PCA, the raw data were
reworked into eight ““season” variables (four each for
temperature and precipitation), using conventional
delineations (i.e., winter is December-February, efc.).
Otherwise, the reference analysis strategy was followed.
This represents a test of a commonly employed, though
nonobjective, variable reduction strategy, sometimes
specifically used to reduce variable intercorrelations.
The clusterings generated with these “season’” data dif-
fer most from the reference solutions in the Great Plains
region. Recall that the reference PCA suggests a non-
conventional subdivision of the year for the precipi-
tation variables. Thus, forming artificial season vari-
ables in this instance results in irretrievable loss of in-
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Clustering when 5 PCs are retained

FI1G. 11. Variant clustering resulting when the first five PCs extracted in the reference PC analysis were retained,
at the 14-cluster level, for comparison with the reference solution in Fig. 6.

formation, which otherwise would not occur. It is
concluded that, for this case, “season” variables do not
possess sufficient temporal resolution for the task at
hand. )

7. Discussion and conclusions

The goals of this work were to determine, as objec-
tively as possible, climate zones and subzones of the
conterminous United States, and to evaluate the quality
and stability of the solution obtained with respect to
the decisions made during the variable preprocessing
stage prior to the commencement of the clustering.
Hierarchical cluster analysis was chosen to perform the
regionalization. Temperature and precipitation were
identified as being likely candidates to be important
distinguishing variables, and long-term monthly av-
erages of temperatures and precipitation accumulations
for the climate division dataset issued by the National
Climatic Data Center (NCDC) were constructed. Next,
a measure of dissimilarity between objects (climate di-
visions) were required. Unfortunately, distance is a
nonuniquely defined concept, which is one of the major
difficulties associated with cluster analysis. We specif-

ically considered two measures, the Euclidean and
Mahalanobis metrics, and discussed their inherent as-
sumptions.

Hierarchical cluster analysis consists of identifying
and fusing the least dissimilar objects remaining at each
step. Once a fusion is accomplished, the distance be-
tween the newly formed cluster and the remaining
clusters must be recomputed. The many clustering
methods that exist differ on how this is accomplished.
We decided that the average linkage method was most
likely to yield acceptable results in our case. As with
the other traditional clustering methods, however, av-
erage linkage produces ‘“hard,” nonoverlapping clus-
ters, which is very likely an unrealistically stringent
constraint. The clustering process continues until one
all-inclusive cluster is created. The results are then in-
spected to determine where the clustering process
should have been halted.

Three major sources of bias were identified and con-
sidered in this study: methodological, latent, and in-
formation bias. The first is inherent in the various clus-
tering methods, and has long been recognized and de-
bated in the literature. We defined latent bias as that
lying hidden in among the objects of the dataset due
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to its resolution, shape, and finiteness. In this study,
the most obvious (and as yet unconfronted ) source of
latent bias was due to the lack of data from Canada,
Mexico, and over bodies of water. Information bias
lurked within the dataset, owing to the existence of
redundant information among the variables, and the
manner in which they are scaled. Both distance metrics
used herein were shown to be sensitive to redundancy.

Information bias was treated in this study by pre-
processing the dataset with principal components
analysis (PCA), taking the 24 original, correlated vari-
ables and creating new uncorrelated variables (principal
components or PCs). Once created, the component
variables must be scaled. The two most common al-
ternatives are to give each component variable the same
variance they explain from the original variables (pro-
ducing variance-weighted scores) or to standardize
them to unit variance (yielding standardized scores).
The latter approach was adopted in this study, owing
to the belief that some amount of the original variance
represents redundant information. This leads to the
necessity of truncating the PCA, usually resulting in
the elimination of components that explain relatively
little variance, but the act of truncation itself may lead
to yet another form of information bias. Truncation
itself is based on the assumption that the small variance
components contribute no useful information regard-
ing the true cluster information latent within the raw
data, but counterexamples of this can be imagined.
After examining pairwise plots of the deleted compo-
nent variables, however, we believe that little or no
potentially important information was lost by elimi-
nating those components. Still, it must be acknowl-
edged that the specific truncation points we chose were
rather subjectively determined and remain open to
question. Further, it was demonstrated that the result-
ing clustering solutions are very sensitive to those
choices.

We termed our “best” clusterings the “reference
clusterings.” Available statistical tests were used to
identify a set of candidate clustering levels, from which
the 14-, 25-, and 8-cluster solutions were chosen for
closer examination. These solutions represent different,
but valuable, levels of detail. In the 14-cluster solution,
a disproportionate number of clusters were concen-
trated in the Pacific Northwest. The bulk of the con-
terminous United States was divided into four zones,
consisting of much of the West (the Interior West),
the Southeast, and two zones in the Northeast quadrant
(the Northeastern Tier and East Central clusters). The
Interior West cluster was used as an example of how
each step in the clustering process inevitably results in
information loss. The 25-cluster solution split this zone
into three subzones with markedly different seasonal
cycles in precipitation. Statistics for these clusters were
presented.

The quality or robustness of the identified clusters,
at any clustering level, is a concern, especially as the
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clusters were constrained to be nonoverlapping. Of
these groupings, those in the Northeast quadrant were
found to be most unstable to perturbations in the da-
taset and analysis procedure. These perturbations con-
sisted mainly of varying the data preprocessing pro-
cedures, and included gridding the data (due to concern
over a form of latent bias), using the raw data (which
contains redundant information ), and altering how the
original variables were standardized to eliminate ar-
bitrary scalings. Both small and large changes in the
PCA preprocessing strategy were considered. In the fu-
ture, alternative methods for excising redundant in-
formation should be investigated.

Some of the difficulties and shortcomings we iden-
tified in the course of this work could be addressed in
the following ways:

o Different preprocessing strategies. The variable
preprocessing strategy adopted herein for the purposes
of identifying and eliminating redundant information
is troublesome and inadequate. Alternate strategies
need to be considered.

o Changing the data source. The resolution of the
NCDC climate division dataset is uneven and, in some
instances, the states are illogically partitioned. Future
work will be performed on a more primitive dataset
based directly on data from individual stations. Since
many of the clusters are quite large compared to the
climate divisions, the resolution of the dataset we have
is probably acceptable. The chief concern is that some
climate divisions may represent nonoptimal mixing of
still more primitive information (comparable to the
discussion of the “season’ variables in section 6), par-
ticularly in zones (such as the mountainous Interior
West) in which more complex partitionings at the less
advanced clustering levels might well be anticipated.
The new dataset will hopefully include data from Can-
ada, Mexico, and from over the water areas; this might
help increase the robustness and internal cohesiveness
of the clusters identified and ease some concerns about
latent bias.

o Overlapping clustering. The clusters are clearly less
robust when they are unnaturally constrained to be
hard and nonoverlapping. While the clusters we iden-
tified were rather distinct statistically, there is no reason
to believe that many of the clusters truly have sharply
defined boundaries. The discrepancies noted among
the clusterings that gave the more comparable region-
alizations yield some information about the sizes of
the “buffer zones” that exist between cluster cores. A
better procedure might well be to simply relax the con-
straint against overlapping. One approach is to perform
some kind of overlapping (or “fuzzy’) clustering. Ar-
abie and Hubert (1992) provide a brief literature review
on this topic. Another approach would be to use PCA
and make spatial plots of eigenvector loadings. These
naturally produce overlapping clusters. Richman and
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Lamb (1985) have performed this type of regionali-
zation.

e [Inclusion of additional or alternate variables. The
clusters might be made more robust if other potentially
relevant variables were added to the dataset.

o Consensus clustering. A large part of the difficulties
encountered in this study issued from our having too
many variables. This made concerns over information
bias very serious. An alternate strategy would be to
perform a series of clusterings, each incorporating no
more than two variables, and, through intercomparison
of the results, generate a compromise solution. The
comparison of independently produced clustering so-
lutions has been termed “‘consensus clustering” (see
Arabie and Hubert 1992). This approach will likely
yield excessively muddled maps if the independent
clusterings generated are very different from one an-
other (as might be expected to occur in the Northeast
quadrant).

e Partitioning clustering. The partitioning approach
to cluster analysis may generate better, more robust
solutions, despite the constraint of cluster hardness.
We were reluctant to give up the advantages of hier-
archical clustering for this study, however.

Of these recommendations, the most important are
the first three. The clusterings presented herein may
be favorably altered by the inclusion of more (and bet-
ter) data, the relaxation of the artificial constraint of
cluster hardness, and the use of superior data prepro-
cessing techniques. If it is applied with a clear under-
standing of its shortcomings, cluster analysis may be a
very useful tool that could be applied to other datasets,
including those generated by climate models, to help
assess how climate types, their locations, statistics, and
distributions could change in the future.

Acknowledgments. The authors are indebted to nu-
merous individuals who took an interest in this work
and gave us advice. In particular, Drs. R. I. Jennrich,
J. Walsh, M. B. Richman, and P. Arabie made valuable
suggestions. Dr. C. Ropelewski alerted the authors to
the suspect climate division in South Carolina. Also,
suggestions from the journal reviewers improved the
quality of the manuscript. This work was supported
by the Academic Senate of the University of California,
Los Angeles.

REFERENCES

Arabie, P,, and L. J. Hubert, 1992: Combinatorial data analysis. Annu.
Rev. Psychol. 1992, 43, 169-203.

Calinski, R. B., and J. Harabasz, 1974: A dendrite method for cluster
analysis. Communic. in Stat., 3, 1-27.

Cattell, R. B., 1952: Factor Analysis. Harper and Row, 462 pp.

Chang, W.-C., 1983: On using principal components before separating
a mixture of two multivariate normal distributions. Appl. Statist.,
32, 267-275.

FOVELL AND FOVELL

2135

Cronbach, L. J., and G. C. Gleser, 1953: Assessing similarity between
profiles. Psych. Bull., 50, 456-473.

De Soete, G., 1986: Optimal variable weighting for ultrametric and
additive tree clustering. Qual. and Quant., 20, 169-180.

Duda, R. O,, and P. E. Hart, 1973: Pattern classification and scene
analysis. Wiley, 482 pp.

Fovell, R. G., and M.-Y. C. Fovell, 1993: Cluster analysis of U.S.
temperature and precipitation data: Regionalization and data
reduction. Preprints, Eighth Conference on Applied Climatology,
Anaheim, CA, Amer. Meteor. Soc., 165-168.

Gadgil, S., and R. N. Iyengar, 1980: Cluster analysis of rainfall stations
of the Indian peninsula. Quart. J. Roy. Meteor. Soc., 106, 873—
886.

—, and N. V. Joshi, 1983: Climatic clusters of the Indian region.
J. Climatol., 3, 47-63.

Jackson, J. E., 1991: 4 User’s Guide to Principal Components. Wiley,
569 pp.

Jolliffe, I. T., 1972: Discarding variables in principal component
analysis. I: Artificial data. Appl. Stat., 21, 160-173.

Kalkstein, L. S., G. Tan, and J. A. Skindlov, 1987: An evaluation of
three clustering procedures for use in synoptic climatological
classification. J. Climate Appl. Meteor., 26, 717-730.

——, P. C. Dunne, and R. S. Vose, 1990: Detection of climatic
change in the western North American Arctic using a synoptic
climatological approach. J. Climate, 3, 1153-1167.

Koeppen, W., 1923: Die Klimate der Erde; Grundriss der Klimakunde.

~ De Gruyter, 369 pp.

Maryon, R. A, and A. M. Storey, 1985: A multivariate statistical
model for forecasting anomalies of half-monthly mean surface
pressure. J. Climatol., 5, 561-578.

Milligan, G. W., and M. C. Cooper, 1985: An examination of pro-
cedures for determining the number of clusters in a data set.
Psychometrika, 50, 159-179.

———, and , 1988: A study of standardization of variables in
cluster analysis. J. Classification, 5, 181-204.

North, G. R., T. L. Bell, R. F. Calahan, and F. J. Moeng, 1982:
Sampling errors in the estimation of empirical orthogonal func-
tions. Mon. Wea. Rev., 110, 699-706.

Preisendorfer, R. W., 1988: Principal Component Analysis in Me-
teorology and Oceanography. Elsevier, 425 pp.

Richman, M. B., 1986: Rotation of principal components. J. Cli-

matol., 6, 293-335.

,and P. J. Lamb, 1985: Climatic pattern analysis of three- and

seven-day summer rainfall in the central United States: Some

methodological considerations and a regionalization. J. Climate
Appl. Meteor., 24, 1325-1342.

SAS Institute, 1985: SAS User’s Guide: Statistics. SAS Institute, 959
pp.

Schulz, T. M., and P. J. Samson, 1988: Nonprecipitating low cloud
frequencies for central North America: 1982. J. Appl. Meteor.,
27, 427-440.

Sokal, R. R., and P. H. A. Sneath, 1963: Principles of Numerical
Taxonomy. Freeman and Co., 359 pp.

Spaeth, H., 1980: Cluster Analysis Algorithms for Data Reduction
and Classification of Objects. Ellis Horwood Limited, 226 pp.

Thornthwaite, C. W., 1931: The climates of North America, according
to a new classification. Geog. Rev., 21, 633-655.

Velicer, W. F., 1976: Determining the number of components from
a matrix of partial correlations. Psychometrika, 41, 321-327.

Ward, J. H., 1963: Hierarchical grouping to optimize an objective
function. J. Amer. Stat. Assoc., 58, 236-244.

Wolter, K., 1987: The Southern Oscillation in surface circulation
and climate over the tropical Atlantic, eastern Pacific, and Indian
oceans as captured by cluster analysis. J. Climate Appl. Meteor.,
26, 540-558.




