PHYS-E0566 - Advanced course in plasma physics with computational emphasis 2. Exercise

1. (Challenging)

- a) Solve the pair correlation function P_{12} equation (23) starting from equation (20) using Fourier transformation.
- b) Using the definition of $N_{\alpha}(\vec{x}, \vec{v}, t)$ (25) and the equations of motion (27) and (28), derive the Klimontovich-Dupree equation (33). Start by calculating $\frac{\partial N_{\alpha}}{\partial t}$.

2. (Straightforward)

- a) Show that the Vlasov equation conserves particles, i.e. that the time derivative $\frac{\partial}{\partial t} \int nf d\vec{x} d\vec{v} = 0$.
- b) Show that the Maxwell-Boltzmann distribution $f = e^{-W/2kT}$, where $W = \frac{1}{2}mv^2 + q\Phi$, is a solution to the Vlasov equation.

3. (Cool-down)

Prove the Jean's theorem, i.e., show that any function of integrals of the motion is a solution to the collisionless Boltzman equation.

Hints:

Consider some function, say H, to be a function of integrals of motion α_i (constants of motion), i.e., $H = H(\alpha_i)$. Then apply the collisionless Boltzmann equation to H. Note that the constants of motion are functions of time and phase-space coordinates r and v.