## MEC-E5003 Fluid Power Basics Calculation Exercises 1 Spring 2017

## **EXERCISE 1**

In the adjacent system, the lift cylinder hoisting the load m is operated by utilizing another cylinder (actuating cylinder).

**A**. Calculate the piston velocities for both cylinders.

**B**. What would be required for the velocities to be equal?

**C**. What is the maximum lifting height?

**D**. What would the maximum lift height be if the stoke length  $l_{s1}$  of the actuating cylinder would be doubled?



**E**. Calculate the pressure  $p_{s11}$  required for lifting the load (system assumed to be ideal; no losses).

Parameter values:  $q_{Vs11} = 10 \text{ l/min}$ ,  $d_{s11} = 63 \text{ mm}$ ,  $d_{s12} = 30 \text{ mm}$ ,  $d_{s21} = 40 \text{ mm}$ ,  $d_{s22} = 25 \text{ mm}$ ,  $l_{s1} = 250 \text{ mm}$ ,  $l_{s2} = 500 \text{ mm}$  and m = 5000 kg.

## **EXERCISE 2**

Calculate the piston velocities v and the maximum force outputs F of differential cylinder with the three given connection variants. Pump output is  $q_{V1}$ = 300 cm<sup>3</sup>/s and the system pressure is limited to 100 bars. The piston areas are  $A_1$ = 100 cm<sup>2</sup> and  $A_3$ = 50 cm<sup>2</sup>.



## **EXERCISE 3**

The piston velocity in adjacent system is required to be v = 0.5 m/s in the shown direction. Pump produces flow 50 l/min. The cylinder is frictionless and leakage free.

Calculate the external load force F of the cylinder in cases where the pump outlet is connected tank line through:

A. one restrictorB. two restrictors in seriesC. two paraller restrictors

 $A_1 = 0.003 \text{ m}^2$ ,  $A_2 = 0.001 \text{ m}^2$ ,  $d_k = 2 \text{ mm}$ ,  $C_q = 0.7 \text{ and } \rho = 860 \text{ kg/m}^3$ .





