Quantity	Equation
Pressure [Pa], external load	$p = \frac{F}{A}$
Input quantities	F = force [N] A = area [m ²]
Pressure [Pa], hydrostatic	$p_{\rm h} = r > g > h$
Input quantities	r = fluid density [kg/m ³] $g = 9,81 \text{ m/s}^2$ h = distance from free fluid surface [m]
Pressure [Pa], total static	$p_{\rm st} = \frac{F}{A} + p_{\rm h} + p_{\rm am}$
Input quantities	p_{am} = ambient pressure [Pa]
Pressure [Pa], absolute	$p_{\rm abs} = p_{\rm am} + p_{\rm aux}$
Input quantities	p_{am} = ambient pressure [Pa] p_{aux} = pressure induced by external and internal loading [Pa]
Bernoulli equation, dynamic total pressure [Pa]	$p_{\rm dyn} = p + r \times g \times z + \frac{r \times z^2}{2} = \text{constant}$
Input quantities	p = static pressure [Pa] r = fluid density [kg/m3] $g = 9,81 \text{ m/s}^2$ z = elevation [m] v = flow velocity [m/s]
Energy equation [Pa]	$p_1 + r \times g \times z_1 + \frac{r \times z_1^2}{2} = p_2 + r \times g \times z_2 + \frac{r \times z_2^2}{2} + p_s$
Input quantities	p = static pressure [Pa] r = fluid density [kg/m3] $g = 9,81 \text{ m/s}^2$ z = elevation [m] v = flow velocity [m/s] $p_s = \text{pressure loss [Pa]}$

Collection of Fluid Power equations – Basic course

Quantity	Equation
Hydraulic diameter [m]	$D_{\rm H} = \frac{4 > A}{L_{\rm A}}$
Input quantities	$A = \text{cross-sectional area of flow channel } [m^2]$ $L_A = \text{wetted perimeter of area } A [m]$
Reynold's number []	$Re = \frac{v > D_{\rm H}}{n}$
Input quantities	v = flow velocity [m/s] n = kinematic viscosity [m ² /s] $D_{\rm H} = $ hydraulic diameter [m]
Pipe friction coefficient (Darcy-Weisbach friction coefficient) in laminar flow case []	$I = \frac{64}{Re}$
Input quantities	Re = Reynold's number []
Pressure loss in straight pipe sections [Pa]	$Dp = I \times \frac{l}{D_{\rm H}} \times \frac{r}{2} \times v^2$
Input quantities	 I = Darcy-Weisbach friction coefficient [] l = pipe length [m] D_H = hydraulic diameter [m] r = fluid density [kg/m³] v = average flow velocity in flow channel's cross-section [m/s]
Pressure loss in case of change in flow direction or velocity [Pa]	$Dp = \mathbf{Z} \times \frac{\mathbf{r}}{2} \times v^2$
Input quantities	<pre>Z = resistance coefficient [] r = fluid density [kg/m³] v = average flow velocity in flow channel's cross-section [m/s]</pre>
Total pressure loss in piping system [Pa]	$\mathbf{D}p_{t} = \overset{N_{1}}{\overset{n}{\mathbf{a}}}_{i=1}^{I} I_{i} \times \frac{l}{D_{\mathrm{H},i}} \times \frac{r_{i}}{2} \times v_{i}^{2} + \overset{N_{2}}{\overset{n}{\mathbf{a}}}_{j=1}^{N_{2}} Z_{j} \times \frac{r_{j}}{2} \times v_{j}^{2}$
Input quantities	 <i>l</i> = Darcy-Weisbach friction coefficient [] <i>l</i> = pipe length [m] <i>D</i>_H = hydraulic diameter [m] <i>r</i> = fluid density [kg/m³] <i>v</i> = average flow velocity in flow channel's cross-section [m/s] <i>Z</i> = resistance coefficient [] <i>i</i>, <i>j</i> = index []

Quantity	Equation
Effect of viscosity on pressure losses of components [Pa]	$Dp_2 \gg \mathcal{E}_{n_1 o}^{2} \frac{\ddot{o}^{0,25}}{\dot{\sigma}} \times Dp_1$
Input quantities	n_1 = kinematic viscosity 1 [m ² /s] n_2 = kinematic viscosity 2 [m ² /s] Dp_1 = pressure loss corresponding viscosity 1 [Pa]
Total pressure level [Pa]	$p_{t} = p_{ex} + \mathbf{D}p_{t}$
Input quantities	p_{ex} = pressure induced by external loading [Pa] Dp_{t} = total pressure losses [Pa]
Velocity of pressure wave in medium [m/s]	$c = \sqrt{\frac{K_{\rm e}}{r}}$
Input quantities	K_e = system'effective bulk modulus [N/m ²] r = fluid density [kg/m ³]
Critical closing time of valve [s]	$t_{\rm cr} = \frac{2 > l}{c}$
Input quantities	 <i>l</i> = distance between birth and reflection points of pressure wave [m] <i>c</i> = velocity of pressure wave in medium [m/s]
Pressure shock induced pressure rise in piping system, case: rapid valve closing ($t_c < t_{cr}$) [Pa]	$Dp_{\max} = \mathbf{r}_0 \times c \times v$
Input quantities	 r₀ = fluid density before pressure shock [kg/m³] c = velocity of pressure wave in medium [m/s] v = average flow velocity before valve closure [m/s] t_c = valve closing time [s]
Pressure shock induced pressure rise in piping system, case: slow valve closing ($t_c > t_{cr}$) [Pa]	$Dp_{\mathrm{max}} = \frac{2 \times t \times r_0 \times t}{t_c}$
Input quantities	 l = distance between birth and reflection points of pressure wave [m] r₀ = fluid density before pressure shock [kg/m³] v = average flow velocity before valve closure [m/s] t_c = valve closing time [s]

Quantity	Equation
Pressure shock induced pressure rise in cylinder volume [Pa]	$Dp_{\max} = \frac{K_{\rm e} \times A}{V_0} \times \sqrt{\frac{m}{k_{\rm H}}}$
Input quantities	$K_{\rm e}$ = effective bulk modulus of closed volume [N/m ²] A = piston area on side of closed volume [m ²] V_0 = closed volume at the moment of valve closure [m ³] v = cylinder velocity before stopping [m/s] m = stopped total mass [kg] $k_{\rm H}$ = hydraulic spring constant [N/m] By the "closed volume" here is meant the summed volume of cylinder chamber and piping between the cylinder and the valve on the side of direction of movement.
Pressure shock induced pressure rise in hydraulic motor volume [Pa]	$Dp_{\max} = W \times \sqrt{\frac{K_{\rm e} \times J}{V_0}}$
Input quantities	 <i>K</i>_e = effective bulk modulus of closed volume [N/m²] <i>W</i> = motor's angular velocity before stopping [rad/s] <i>J</i> = moment of inertia of rotating parts of motor and load reduced on motor axle [kgm²] <i>V</i>₀ = closed volume at the moment of valve closure [m³] <i>By the "closed volume" here is meant the summed volume of 0,5-motor displacement and piping between the motor and the valve on the side of direction of rotation.</i>
Total pressure level in pressure shock [Pa]	$p_{\rm t} = p_{\rm sys,st} + Dp_{\rm max}$
Input quantities	$p_{\text{sys,st}}$ = system's static pressure level [Pa] Dp_{max} = pressure rise induced by pressure shock [Pa]

Quantity	Equation
Converting / reducing pressure over cylinder's piston [Pa]	$p_{\text{converted}} = \frac{A_{\text{tobeconverted}}}{A_{\text{converted}}} \times p_{\text{tobeconverted}}$
Input quantities	$A_{\text{tobeconverted}} = \text{piston area on the side of the pressure to be converted } [m^2]$
	$A_{\text{converted}}$ = piston area on the side of the converted pressure [m ²]
	<i>p</i> _{tobeconverted} = pressure to be converted [Pa]
Flow rate [m ³ /s]	$q_{\rm v} = A \! \times \! v$
Input quantities	 A = cross-sectional area of flow channel, perpendicular to flow [m²] v = average flow velocity in flow channel's cross-section
	[m/s]
Mass flow rate [kg/s]	$q_{\rm m} = r \times V + V \times R$
Input quantities	r = fluid density [kg/m ³]
	V = now rate [m-/s] V = volume [m3]
	\mathbf{k} = change in fluid density [kg/m ³ s]
Kirchhoff's I law [m ³ /s]	$\bigotimes_{i=1}^{N^1} q_{\mathrm{V},i} = \bigotimes_{j=1}^{N^2} q_{\mathrm{V},j}$
Input quantities	$q_{V,i}$ = incoming flow rate [m ³ /s] $q_{V,j}$ = outgoing flow rate [m ³ /s] i, j = index []
Throttle equation [m ³ /s]	$q_{\rm v} = C_{\rm q} \times A \times \sqrt{\frac{2 \times Dp}{r}}$
Input quantities	C_q = flow coefficient [] A = cross-sectional flow area of throttle [m2] Dp = pressure difference over the throttle [Pa] r = fluid density [kg/m3]

Quantity	Equation
Flow rate in laminar pipe flow [m ³ /s]	$q_{\rm v} = \frac{\boldsymbol{p} \times d^4}{128 \times \boldsymbol{h} \times \boldsymbol{\lambda}} \times (p_1 - p_2)$
Input quantities	 d = pipe's inner diameter [m] h = dynamic viscosity [Paxs] l = pipe length [m] p₁ = pressure at upstream point 1 [Pa] p₂ = pressure at downstream point 2 [Pa]
Flow rate in laminar rectangular gap flow [m ³ /s]	$q_{\rm v} = \frac{b \varkappa h^3}{12 \varkappa h \varkappa} \varkappa (p_1 - p_2)$
Input quantities	 b = gap width [m] h = gap height [m] h = dynamic viscosity [Paxs] d = gap length [m] p₁ = pressure at upstream point 1 [Pa] p₂ = pressure at downstream point 2 [Pa]
Flow rate in laminar annular gap flow [m ³ /s]	$q_{\rm V} = \frac{p \times d \times h^3}{12 \times h \times d} \times \stackrel{\acute{e}}{\underset{\acute{e}}{\otimes}} + 1.5 \times \stackrel{\ast}{\underset{\acute{e}}{\otimes}} \stackrel{\acute{o}}{\underset{\acute{e}}{\otimes}} \stackrel{\acute{o}}{\underset{\acute{e}}{\ast}} \stackrel{\acute{o}}{\underset{\acute{e}}}$
Input quantities	<pre>d = outer inner diameter of flow channel [m] h = gap height [m] h = dynamic viscosity [Paxs] d = gap length [m] e = eccentricity [] p₁ = pressure at upstream point 1 [Pa] p₂ = pressure at downstream point 2 [Pa]</pre>
Kinematic viscosity [m ² /s]	$n = \frac{h}{r}$
Input quantities	h = dynamic viscosity [Pa>s] r = fluid density [kg/m ³]
Density as function of temperature [kg/m ³]	$r_q = \frac{r_{15}}{1 + a \times (q - 15)}$
Input quantities	r_{15} = fluid density at 15 °C [kg/m ³] q = temperature [°C] a = thermal expansion coefficient of volume [1/°C]

Quantity	Equation
Density as function of pressure [kg/m ³]	$r_{p2} = \frac{r_{p1}}{1 - c_p \times (p_2 - p_1)}$
Input quantities	r_{p1} = fluid density at pressure p_1 [kg/m ³] p_1 = initial pressure [Pa] p_2 = final pressure [Pa] c_p = compressibility coefficient [m ² /N]
Thermal capacity [J/K]	$C_{\theta} = \overset{N}{\underset{i=1}{\overset{N}{a}}} m_i \rtimes_{p,i}$
Input quantities	m = mass [kg] $c_p = specific heat [J/kgK]$ i = index []
Heat transfer ability aka cooling ability of system [W/K]	$B_{\theta} = \mathop{\mathbf{a}}_{i=1}^{N} C_{\mathrm{U},i} \times A_{i}$
Input quantities	$C_{\rm U}$ = thermal transmittance [W/m ² K] A = heat transmitting area [m ²] i = index []
Final temperature of system [K]	$oldsymbol{q}_{ m e}=oldsymbol{q}_{ m 0}+rac{P_{ m s}}{B_{ m heta}}$
Input quantities	q_0 = system's initial temperature at time $t = 0$ [K] P_s = system's average power loss [W] B_q = system's heat transfer ability [W/K]
Bulk modulus of hollow cylindrical part [N/m ²]	$K = \frac{E_{\rm m} > s}{d}$
Input quantities	$E_{\rm m}$ = part's modulus of elasticity [N/m ²] s = part's wall thickness [m] d = part's inner diameter [m]
Bulk modulus of free air in adiabatic change of state [N/m ²]	$K_a = 1,4 \times p$
Input quantities	p = system's pressure level [Pa]

Quantity	Equation
Effective bulk modulus [N/m ²]	$\frac{1}{K_{e}} = \frac{1}{K_{f}} + \overset{N1}{\overset{a}{a}} \overset{\mathcal{A}}{\overset{\mathcal{A}}{\overset{v}{v}}}_{V_{t}} \times \overset{1}{\overset{v}{\overset{v}{K}}}_{K_{c,i}} \overset{\ddot{\overset{v}{\phi}}{\overset{v}{\phi}}}_{j=1} \overset{N2}{\overset{\mathcal{A}}{\overset{\mathcal{A}}{\overset{v}{v}}}}_{V_{t}} \times \overset{1}{\overset{\ddot{\overset{v}{h}}{\overset{v}{\phi}}}}_{K_{p,j}} \overset{\ddot{\overset{v}{\phi}}{\overset{v}{\phi}}}_{\overset{v}{\phi}} \times \overset{1}{\overset{v}{\overset{v}{\phi}}}_{J_{t}} \overset{\mathcal{A}}{\overset{v}{\overset{v}{\phi}}}_{J_{t}} \times \overset{1}{\overset{v}{\overset{v}{\phi}}}_{J_{t}} \times \overset{1}{\overset{v}{\phi}}_{J_{t}} \times \overset{1}{\overset{v}{\overset{v}{\phi}}}_{J_{t}} \times \overset{1}{\overset{v}{\overset{v}{\phi}}}_{J_{t}} \times \overset{1}{\overset{v}{\overset{v}{\phi}}}_{J_{t}} \times \overset{1}{\overset{v}{\overset{v}{\phi}}}_{J_{t}} \times \overset{1}{\overset{v}{\overset{v}{\phi}}}_{J_{t}} \times \overset{1}{\overset{v}{\overset{v}{\phi}}} \overset{1}{\overset{v}{\overset{v}{\phi}}_{J_{t}} \overset{1}{\overset{v}{\phi}}} \overset{1}{\overset{v}{\overset{v}{\phi}}} \overset{1}{\overset{v}{\overset{v}{\phi}} \overset{1}{\overset{v}{\overset{v}{\phi}}} \overset{1}{\overset{v}{\overset{v}{\phi}} \overset{1}{\overset{v}{\overset{v}{\phi}}} \overset{1}{\overset{v}{\overset{v}{\overset{v}{\phi}}} \overset{1}{\overset{v}{\overset{v}{\phi}}} \overset{1}{\overset{v}{\overset{v}{\overset{v}{\phi}}} \overset{1}{\overset{v}{\overset{v}$
Input quantities	$K_{\rm f} = \text{bulk modulus of fluid [N/m2]}$ $V_{\rm t} = \text{total volume of pressurized system [m3]}$ $V_{\rm c} = \text{volume of single cylinder [m3]}$ $K_{\rm c} = \text{bulk modulus of single cylinder [N/m2]}$ $V_{\rm p} = \text{volume of single pipe [m3]}$ $K_{\rm p} = \text{bulk modulus of single pipe [N/m2]}$ $V_{\rm h} = \text{volume of single hose [m3]}$ $K_{\rm h} = \text{bulk modulus of single hose [N/m2]}$ $V_{\rm a} = \text{volume of free air [m3]}$ $K_{\rm a} = \text{bulk modulus of air [N/m2]}$ $i, j, k = \text{index []}$
Volume change induced by compressibility [m ³]	$DV = \frac{1}{K_{\rm e}} \rtimes V_0 \rtimes Dp$
Input quantities	K_e = system's effective bulk modulus [N/m ²] V_0 = system's initial volume [m ³] Dp = pressure change in fluid [Pa]
Impulse [kgm/s]	$I_{\rm F} = m > {\sf D} v$
Input quantities	m = moving mass [kg] Dv = change in velocity [m/s]
Flow force [N]	$\overline{F}_{q} = r \times q_{v} \times \overline{v}$
Input quantities	r = fluid density [kg/m3] $q_V = \text{flow rate [m3/s]}$ $\overline{v} = \text{flow velocity vector [m/s]}$

Quantity	Equation
Hydraulic power [W]	$P = q_v \times p$
Input quantities	$q_{\rm V} =$ flow rate [m ³ /s] p = pressure [Pa]
Hydraulic power loss [W]	$P_{\rm s} = q_{\rm v} \times p_{\rm s}$
Input quantities	$q_{\rm V} =$ flow rate [m ³ /s] $p_{\rm s} =$ pressure loss [Pa]
Input power [W]	$P_{\rm in} = P_{\rm out} + P_{\rm s}$
Input quantities	$P_{\text{out}} = \text{output power [W]}$ $P_{\text{s}} = \text{power loss [W]}$
Total efficiency []	$h_{\rm t} = \frac{P_{\rm out}}{P_{\rm in}}$
Input quantities	$P_{\text{out}} = \text{output power [W]}$ $P_{\text{in}} = \text{input power [W]}$
Total efficiency []	$h_{t} = h_{v} \times h_{hm}$
Input quantities	h_v = volumetric efficiency [] h_{hm} = hydromechanical efficiency []
Total efficiency of work cycle []	$h_{t,wc} = \frac{P_{out,wc}}{P_{in,wc}} = \frac{\overset{N}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{N}{\overset{i=1}{\overset{N}{\overset{i=1}{\overset{N}{\overset{i=1}{\overset{N}{\overset{N}{\overset{i=1}{\overset{N}{\overset{N}{\overset{i=1}{\overset{N}{\overset{N}{\overset{i=1}{\overset{N}{\overset{N}{\overset{i=1}{\overset{N}{\overset{N}{\overset{i=1}{\overset{N}{\overset{N}{\overset{i=1}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{I}}{\overset{i=1}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{$
Input quantities	$P_{\text{out,wc}} = \text{utility power during work cycle [W]}$ $P_{\text{in,wc}} = \text{power usage during work cycle [W]}$ $P_{\text{in,}i} = \text{input power of a single phase of work cycle [W]}$ $h_{\text{t},i} = \text{total efficiency of a single phase of work cycle []}$ $t_i = \text{duration of a single phase of work cycle [s]}$ i = index []

Quantity	Equation
Pump flow [m ³ /s]	$q_{\rm v} = n \mathcal{N}_{\rm g} \mathcal{N}_{\rm v}$
Input quantities	n = rotational velocity [r/s] $V_g = \text{geometric displacement, swept volume [m3/r]}$ $h_v = \text{volumetric efficiency []}$
Pump drive torque [Nm]	$T = \frac{Dp \rtimes V_{g}}{2 \rtimes p \rtimes h_{hm}}$
Input quantities	Dp = pressure difference between pump's inlet and outlet [Pa] V_g = geometric displacement, swept volume [m ³ /r] h_{hm} = hydromechanical efficiency []
Pump drive power [W]	$P = T \times w = \frac{q_{\rm v} \times Dp}{h_{\rm t}}$
Input quantities	T = pump drive torque [Nm] W = angular velocity of pump axle [rad/s] $q_V = \text{pump flow [m^3/s]}$ Dp = pressure difference between pump's inlet and outlet [Pa] $h_t = \text{total efficiency []}$
Rotational velocity of hydraulic motor [r/s]	$n = \frac{q_{\rm v} > h_{\rm v}}{V_{\rm g}}$
Input quantities	$q_{\rm V}$ = flow rate [m ³ /s] $V_{\rm g}$ = geometric displacement, swept volume [m ³ /r] $h_{\rm v}$ = volumetric efficiency []
Motor torque [Nm]	$T = \frac{V_{\rm g} \times Dp \times h_{\rm hm}}{2 \times p}$
Input quantities	$V_{\rm g}$ = geometric displacement, swept volume [m ³ /r] Dp = pressure difference between motor's inlet and outlet [Pa] $h_{\rm hm}$ = hydromechanical efficiency []
Motor power [W]	$P = q_{\rm v} \times \mathbf{D} p \times \mathbf{h}_{\rm t} = T \times \mathbf{W}$
Input quantities	$q_V = \text{flow rate } [\text{m}^3/\text{s}]$ Dp = pressure difference between motor's inlet and outlet [Pa] $h_t = \text{total efficiency } []$ T = motor's torque [Nm] W = angular velocity of motor axle [rad/s]

Quantity	Equation
Angular velocity [rad/s]	W = 2 > p > n
Input quantities	n = rotational velocity [r/s]
Cylinder velocity [m/s]	$v = \frac{q_{\rm v,in} > h_{\rm v}}{A_{\rm in}}$
Input quantities	$q_{\rm V,in} =$ input flow rate to cylinder [m ³ /s] $A_{\rm in} =$ piston area on the input flow side [m ²] $h_{\rm v} =$ volumetric efficiency []
Cylinder force [N]	$F = (p_{\rm in} \times A_{\rm in} - p_{\rm out} \times A_{\rm out}) \times p_{\rm hm}$
Input quantities	p_{in} = pressure on the input flow side of cylinder [Pa] p_{out} = pressure on the output flow side of cylinder [Pa] A_{in} = piston area on the input flow side [m ²] A_{out} = piston area on the output flow side [m ²] h_{hm} = hydromechanical efficiency []
Cylinder power, mechanical [W]	$P = q_{\text{v,in}} \times \overset{\boldsymbol{\mathfrak{S}}}{\underset{\boldsymbol{\mathfrak{S}}}{\boldsymbol{\mathcal{P}}}}_{\text{in}} - \frac{A_{\text{out}}}{A_{\text{in}}} \times p_{\text{out}} \overset{\boldsymbol{\mathbf{\ddot{O}}}}{\underset{\boldsymbol{\boldsymbol{\mathcal{S}}}}{\overset{\boldsymbol{\mathbf{\mathcal{O}}}}{\boldsymbol{\mathcal{I}}}}} \boldsymbol{\mathcal{H}}_{\text{t}} = F \times \boldsymbol{\mathcal{V}}$
Input quantities	$q_{V,in} = \text{input flow rate to cylinder } [m^3/s]$ $p_{in} = \text{pressure on the input flow side of cylinder } [Pa]$ $p_{out} = \text{pressure on the output flow side of cylinder } [Pa]$ $A_{in} = \text{piston area on the input flow side } [m^2]$ $A_{out} = \text{piston area on the output flow side } [m^2]$ $h_t = \text{total efficiency } []$ F = cylinder force [N] v = cylinder velocity [m/s]
Cylinder's allowable loading	$F = \frac{\rho^2 \times E_{\rm m} \times I}{C_{\rm n} \times I_{\rm R}^2}$
Input quantities	$E_{\rm m} = \text{modulus of elasticity [N/m2]}$ $I = \text{area moment of inertia [m4]}$ $C_{\rm n} = \text{safety coefficient []}$ $l_{\rm R} = \text{reduced length [m]}$

Quantity	Equation
Nominal volume of pressure accumulator [m ³]	$V_{1} = \frac{DV}{\stackrel{\bullet}{\underset{\bullet}{\overset{\bullet}{\underset{\bullet}{\overset{\bullet}{\underset{\bullet}{\overset{\bullet}{\underset{\bullet}{\overset{\bullet}{\underset{\bullet}{\underset$
Input quantities	DV = fluctuating fluid volume [m3] $p_1 = \text{gas precharge pressure [Pa]}$ $p_2 = \text{minimum working pressure [Pa]}$ $p_3 = \text{maximum working pressure [Pa]}$ k = polytropic constant []
Filtration ratio []	$\boldsymbol{b}_{\mathrm{x}} = \frac{N_{\mathrm{1}}}{N_{\mathrm{2}}}$
Input quantities	N_1 = number of particles (size <i>x</i>) upstream of filter [] N_2 = number of particles (size <i>x</i>) downstream of filter []
Filter efficiency []	$S_{x} = \overset{\mathcal{B}}{\underset{v}{gl}} - \frac{1}{b_{x}} \overset{\ddot{o}}{\underset{\check{o}}{\overset{i}{j}}} 100\%$
Input quantities	b_x = filtration ratio for particle size x []