SOLUTION 4

The required output power of the hydraulic motor

$$
P_{\mathrm{m}}=T_{2} \cdot \omega_{2}=T_{2} \cdot 2 \cdot \pi \cdot n_{2}=300 \mathrm{Nm} \cdot 2 \cdot \pi \cdot 400 / 60 \mathrm{~s}=12.6 \mathrm{~kW}
$$

Due to losses, the input power to the motor has to be larger than the output power. From the input power, flow requirement can be calculated.

$$
\begin{aligned}
& P_{\mathrm{m}, \mathrm{hydr}}=\frac{P_{\mathrm{m}}}{\eta_{t 2}}=\frac{12.6 \mathrm{~kW}}{0.83}=15.1 \mathrm{~kW} \\
& P_{\mathrm{m}, \mathrm{hydr}}=\Delta p \cdot q_{\mathrm{v}, \mathrm{~m}} \\
\Rightarrow & q_{\mathrm{V}, \mathrm{~m}}=\frac{P_{\mathrm{m}, \mathrm{hydr}}}{\Delta p}=\frac{15.1 \mathrm{~kW}}{14 \cdot 10^{6} \mathrm{~Pa}}=1.08 \cdot 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \quad(=64.91 / \mathrm{min})
\end{aligned}
$$

With non-ideal pump, its output flow is lesser than with ideal one; which is expressed with volumetric efficiency factor η_{v}.

$$
q_{\mathrm{v}, \mathrm{p}}=\eta_{\mathrm{v}} \cdot V_{\mathrm{g}} \cdot n_{1}=\eta_{\mathrm{v}} \cdot V_{\mathrm{rad}} \cdot \omega_{1}
$$

The inlet flow to the hydraulic motor is equal to pump's outlet flow

$$
\begin{aligned}
& q_{\mathrm{V}, \mathrm{p}}=q_{\mathrm{v}, \mathrm{~m}} \\
\Rightarrow \quad & V_{\mathrm{g}}=\frac{q_{\mathrm{v}, \mathrm{p}}}{\eta_{\mathrm{v}} \cdot n_{1}}=\frac{1.08 \cdot 10^{-3} \mathrm{~m}^{3} / \mathrm{s}}{0.95 \cdot 1000 / 60 \mathrm{~s}}=68.3 \cdot 10^{-6} \frac{\mathrm{~m}^{3}}{\mathrm{r}}=68.3 \frac{\mathrm{~cm}^{3}}{\mathrm{r}}
\end{aligned}
$$

Pump's hydraulic power (outlet power)

$$
P_{1}=q_{\mathrm{V}, \mathrm{p}} \cdot \Delta p=1.08 \cdot 10^{-3} \cdot 14 \cdot 10^{6}=15 \mathrm{~kW}
$$

Which can be seen being equal to (calculated above) motors inlet power (Pipes assumed to be lossless)

Pumps mechanical inlet power (electric motors output power)

$$
P_{\mathrm{pm}}=\frac{P_{\mathrm{m}, \mathrm{hydr}}}{\eta_{t 1}}=\frac{15.1 \mathrm{~kW}}{0.82}=18.4 \mathrm{~kW}
$$

SOLUTION 5

a) Flow requirement to cylinder $q_{\mathrm{V}, \mathrm{s}}$

$$
q_{\mathrm{v}, \mathrm{~s}}=\frac{v \cdot A_{1}}{\eta_{\mathrm{v}, \mathrm{~s}}}=\frac{0.02 \cdot 20 \cdot 10^{-4}}{1}=40 \cdot 10^{-6} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

Flow produced by pump $q_{\mathrm{v}, \mathrm{p}}$.
$q_{\mathrm{V}, \mathrm{p}}=\varepsilon \cdot \omega \cdot V_{\mathrm{rad}, \text { max }} \cdot \eta_{\mathrm{v}, \mathrm{p}} \Rightarrow \varepsilon=\frac{q_{\mathrm{V}, \mathrm{p}}}{\omega \cdot V_{\mathrm{rad}, \text { max }} \cdot \eta_{\mathrm{v}, \mathrm{p}}}$
Flows have to be equal $q_{\mathrm{V}, \mathrm{p}}=q_{\mathrm{V}, \mathrm{s}}$ (assuming that the pressure relief valve remains closed).
$\Rightarrow \varepsilon=\frac{q_{\mathrm{V}, \mathrm{s}}}{\omega \cdot V_{\mathrm{rad}, \text { max }} \cdot \eta_{\mathrm{v}, \mathrm{p}}}=\frac{40 \cdot 10^{-6}}{1460 \cdot \frac{2 \pi}{60} \cdot 0.6 \cdot 10^{-6} \cdot 0.87}=0.5$
Pumps displacement has to be set to 50% of its maximum value.
b) Let's calculate the pressure in the piston side chamber of cylinder while assuming the pressure in rod side chamber being zero.

$$
p_{\mathrm{P}}=\frac{F}{A_{1} \cdot \eta_{\mathrm{hm}, \mathrm{~s}}}=\frac{18600}{20 \cdot 10^{-4} \cdot 0.93}=10 \mathrm{MPa}
$$

Calculating the driving torque of the pump T_{P}

$$
T_{\mathrm{P}}=p_{\mathrm{P}} \cdot \frac{\varepsilon \cdot V_{\mathrm{rad}, \text { max }}}{\eta_{\mathrm{hm}, \mathrm{p}}}=10 \cdot 10^{6} \cdot \frac{0.5 \cdot 0.6 \cdot 10^{-6}}{0.94}=3.2 \mathrm{Nm}
$$

The power required to drive the pump $P_{\text {in }}$
$P_{\mathrm{in}}=T_{\mathrm{P}} \cdot \omega=3.2 \cdot 1460 \cdot \frac{2 \pi}{60}=489 \mathrm{~W}$
Mechanical output power of cylinder $P_{\text {out }}$

$$
P_{\text {out }}=F \cdot v=18600 \cdot 0.02=372 \mathrm{~W}
$$

Overall system efficiency η_{t}
$\eta_{t}=\frac{P_{\text {out }}}{P_{\text {in }}}=\frac{372}{489}=0.76$

SOLUTION 6

a) Magnet a is energized

$$
\begin{aligned}
& q_{V 3}=v \cdot A_{3} \\
& q_{\mathrm{V}, \mathrm{p}}=v \cdot A_{1}
\end{aligned} \quad \Rightarrow q_{V 3}=\frac{q_{\mathrm{V}, \mathrm{p}} \cdot A_{3}}{A_{1}}=\frac{421 / \mathrm{min} \cdot 25 \mathrm{~cm}^{2}}{31.2 \mathrm{~cm}^{2}}=33.71 / \mathrm{min}
$$

The pressure losses in both control edges (from chart)

$$
\begin{array}{ll}
q_{V 3}=33.71 / \mathrm{min} & \Rightarrow \Delta p_{\mathrm{B} \rightarrow \mathrm{~T}} \approx 4 \mathrm{bar} \\
q_{\mathrm{V}, \mathrm{p}}=421 / \mathrm{min} & \Rightarrow \Delta p_{\mathrm{P} \rightarrow \mathrm{~A}} \approx 8 \mathrm{bar}
\end{array}
$$

Resolving p_{1} (from force balance equation)

$$
\begin{aligned}
& p_{1} \cdot A_{1}-p_{3} \cdot A_{3}=F \\
& p_{1}=\frac{p_{3} \cdot A_{3}+F}{A_{1}} \\
& p_{1}=\frac{30 \mathrm{kN}+4 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2} \cdot 25 \cdot 10^{-4} \mathrm{~m}^{2}}{31.2 \cdot 10^{-4} \mathrm{~m}^{2}}=9.9 \mathrm{MPa} \\
& p_{\mathrm{p}}=p_{1}+\Delta p_{\mathrm{P} \rightarrow \mathrm{~A}}=9.9 \mathrm{MPa}+0.8 \mathrm{MPa}=10.7 \mathrm{MPa}
\end{aligned}
$$

b)

$$
\begin{aligned}
& q_{\mathrm{V}, \mathrm{p}}=v \cdot A_{3} \\
& q_{V 1}=v \cdot A_{1}
\end{aligned} \quad \Rightarrow q_{V 1}=\frac{q_{\mathrm{v}, \mathrm{p}} \cdot A_{1}}{A_{3}}=\frac{421 / \mathrm{min} \cdot 31.2 \mathrm{~cm}^{2}}{25 \mathrm{~cm}^{2}}=52.41 / \mathrm{min}
$$

The pressure losses (from chart)

$$
\begin{array}{ll}
q_{V 1}=52.41 / \mathrm{min} & \Rightarrow \Delta p_{\mathrm{A} \rightarrow \mathrm{~T}} \approx 10 \mathrm{bar} \\
q_{\mathrm{V}, \mathrm{p}}=421 / \mathrm{min} & \Rightarrow \Delta p_{\mathrm{P} \rightarrow \mathrm{~B}} \approx 8 \mathrm{bar}
\end{array}
$$

Resolving p_{3} (from force balance equation)

$$
\begin{aligned}
& p_{3}=\frac{F+p_{1} \cdot A_{1}}{A_{3}} \\
& p_{3}=\frac{30 \mathrm{kN}+10 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2} \cdot 31.2 \cdot 10^{-4} \mathrm{~m}^{2}}{25 \cdot 10^{-4} \mathrm{~m}^{2}}=13.2 \mathrm{MPa}
\end{aligned}
$$

$$
p_{\mathrm{p}}=p_{3}+\Delta p_{\mathrm{P} \rightarrow \mathrm{~B}}=13.2 \mathrm{MPa}+0.8 \mathrm{MPa}=14 \mathrm{MPa}
$$

Additional information 1:

Should all the losses in the transfer line be included, one method for solving the pumps output ports pressure would is to:

Solve volume flows in pipes
Find out the (inside) diameters of pipes

Calculate the flow velocities in the pipes
\downarrow

Find out loss coefficients
of pipe bendings (see literature)

$$
\begin{aligned}
\Delta p_{\text {bend }}= & \xi_{90^{\circ}} \cdot \frac{\rho \cdot v^{2}}{2} \\
& \downarrow
\end{aligned}
$$

Calculate losses in each bending Calculate $R e$ at each pipe

Find out the surface roughness of the pipes \downarrow
Find out friction factor λ, e.g. Moody's chart \downarrow

$$
\begin{gathered}
\Delta p_{\mathrm{pipe}}=\lambda \cdot \frac{l}{d} \cdot \frac{\rho \cdot v^{2}}{2} \\
\downarrow
\end{gathered}
$$

Calculate pressure loss at each pipe

Sum the pressure losses starting from tank and return line and ending to the rod side chamber of the cylinder
\downarrow
$\Delta p_{\text {IT }}+\Delta p_{\text {bends }, 4}+\Delta p_{\mathrm{B} \rightarrow \mathrm{T}}+\Delta p_{\mathrm{IB}}+\Delta p_{\text {bends }, 2}$

Resolve the pressure in the piston side chamber of the cylinder by using the force equilibrium equation of the cylinder \downarrow
To this value add the remaining pressure losses between the piston side chamber and pump output port (pipe bendings, valve, pipes)

$$
\begin{gathered}
\downarrow \\
\Delta p_{\mathrm{IA}}+\Delta p_{\mathrm{bends}, 66} \\
\downarrow
\end{gathered}
$$

The pressure at the pump outlet port p_{p} is resolved!

Additional information 2:

Sometimes flow loss curves are not given, but only a flow rate value with a given pressure loss. In such cases, the losses with any other given flow rate can be estimated as in the following example.

EXAMPLE ASSIGNMENT

Let's assume that pressure loss-curves are not available. The pressure loss $(\mathrm{P} \rightarrow \mathrm{B})$ with flow of $q_{\mathrm{V}}=40 \mathrm{l} / \mathrm{min}$ is known to be $\Delta p=4$ bar. Calculate the pressure loss, when the flow is $q_{\mathrm{v}}=30 \mathrm{l} / \mathrm{min}$ and the opening of the valve (and therefore the flow cross section area) remains constant.

SOLUTION

Flow through a turbulent choke (as in the case of a flow control valve) is

$$
q_{\mathrm{v}}=C_{\mathrm{q}} \cdot A \cdot \sqrt{\frac{2 \cdot \Delta p}{\rho}}
$$

where
$C_{\mathrm{q}}=$ flow coefficient (depends on flow velocity and of the geometry of the choke orifice)
$A=\pi \cdot d \cdot h$
$h=$ opening of the slide
$d=$ diameter of the slide
$\Delta p=$ pressure difference over a control edge
$\rho=$ density of the fluid

Using previous

$$
\begin{aligned}
& \frac{q_{V 1}}{q_{V 2}}= \\
& C_{q} \cdot A_{1} \cdot \sqrt{\frac{2 \cdot \Delta p_{1}}{\rho}} \\
& C_{q} \cdot A_{2} \cdot \sqrt{\frac{2 \cdot \Delta p_{2}}{\rho}}=\frac{\sqrt{\Delta p_{1}}}{\sqrt{\Delta p_{2}}} \text { when } A_{1}=A_{2} \text { ja } \rho=\mathrm{constant} \\
& \Rightarrow \Delta p_{2}=\Delta p_{1} \cdot\left(\frac{q_{V 2}}{q_{V 1}}\right)^{2}=4 \mathrm{bar} \cdot\left(\frac{301 / \mathrm{min}}{401 / \mathrm{min}}\right)^{2}=2.25 \mathrm{bar}
\end{aligned}
$$

