Tassu Takala 2019

Emergent User Interfaces CS-E4200

Introduction to Multimodal Interaction 1a

Sound & Haptics

these slides adapted from 2018 course materials <u>https://mycourses.aalto.fi/course/view.php?id=16936§ion=1</u> (David McGookin) <u>https://mycourses.aalto.fi/course/view.php?id=16924§ion=1</u> (Mark Billinghurst)

Project Assignment

- Project Assignment sheet has been released on MyCourses
- Covers all the details
- First Step Think! : Where could a tangible approach work?
 - wellbeing, navigation, information search, communication, fun ...
- Fill out the Google Form with as many ideas as you have!

Multimodality

Figure 1.1 How the computer sees us.

Multimodality

 We don't fit fit that model any more than we fit the WIMP paradigm!

THERE'S NOT ANAPP FOR THAT MOBILE USER EXPERIENCE DESIGN FOR LIFE

SIMON ROBINSON GARY MARSDEN MATT JONES

- How an organism obtains information for perception:
 - Sensation part of Somatic Division of Peripheral Nervous System
 - Integration and perception requires the Central Nervous System
- Five major senses:
 - Sight (Opthalamoception)
 - Hearing (Audioception)
 - Taste (Gustaoception)
 - Smell (Olfacaoception)
 - Touch (Tactioception)

Other Lesser Known Senses..

- Proprioception = sense of body position
 what is your body doing right now
- Equilibrium = balance
- Acceleration
- Nociception = sense of pain
- Temperature
- Satiety (the quality or state of being fed or gratified to or beyond capacity)
- Thirst
- Micturition
- Amount of CO₂ and Na in blood

Multimodality

- Multiple different definitions
- In this course we mean the use of one or more senses to communicate information
 = multisensory UI
 - Sound
 - Touch
 - Taste
 - Smell
 - Vision
- · And why this is a useful thing to do!

Sound

- What is Sound?
- How do we hear it?
- How can we create sounds?
- How can we use it in a User Interface?

What is Sound

- A vibration (repeating waveform) that propagates through an elastic media and is detected by a receiver*
- Two key properties
 - Frequency
 - Pressure Level (Amplitude)

What is Sound?

Frequency

- Measured in Hertz (HZ)
 - 1HZ = 1 cycle per second
- Humans can hear approx. 20Hz 20kHz
 - reduces with age to about 15kHZ
- Pressure Level
 - Variations in sound increase and decrease air pressure.
 - This change is measured in relation to "standard" sound pressure level on a logarithmic scale (decibels dB)
 - normal conversation 65dB Chainsaw 120dB
 - Above 85 is to be avoided
 - Note this is not loudness

Loudness

Pressure Level and Frequency both contribute to loudness

Measured in Phons

Taken from: S. A. Gelfand. Hearing: An Introduction to Psychological and Physiological Acoustics. Marcel Dekker Inc, New York, 3rd edition, 1998.

Timbre

- Not only a single frequency
 - non-sinusoidal waveform
 - tonal sound: base frequency (F_0) + harmonic overtones $(n \times F_0)$
- Not constant loudness
 - sound envelope

Noise

- Non-tonal sound (non-repeating waveform)
 - continuous, non-harmonic spectrum
- Random (not predictable) signal
- But the distribution of values/frequencies matters
 - white noise, pink/blue noise, popcorn noise, etc.

Voice and Speech

- Formed by the vocal tract
- Vowels (*a*, *e*, *i*, ...) have a harmonic spectrum characterized by *formants* (peaks at certain kHz frequencies)
- Consonants
 - harmonic: voiced nasals (b, m, n, j, ...)
 - transients (k, p, t)
 - continuous noise (f, s, ...)

Anatomy of the Ear

How the Ear Works

<u>https://www.youtube.com/watch?v=pCCcFDoyBxM</u>

Sound Frequency and Amplitude

- Frequency determines the *pitch* of the sound
- Amplitude relates to intensity of the sound
 - Loudness is a subjective measure of intensity

High frequency = short period

Low frequency = long period

Distance to Listener

- Relationship between sound intensity and distance to the listener
 - Inverse-square law
 - The intensity varies inversely with the square of the distance from the source. So if the distance from the source is doubled (increased by a factor of 2), then the intensity is quartered (decreased by a factor of 4).

Auditory Thresholds

- Humans hear frequencies from 20 22,000 Hz
- Most everyday sounds from 40 80 dB

Sound Localization

- Humans have two ears
 localize sound in space
- Sound can be localized using 3 coordinates
 - Azimuth, elevation, distance

Sound Localization

- Azimuth Cues
 - Difference in time of sound reaching two ears
 - Interaural time difference (ITD)
 - Difference in sound intensity reaching two ears
 - Interaural level difference (ILD)
- Elevation Cues
 - Monaural cues derived from the pinna (ear shape)
 - Head related transfer function (HRTF)
- Range Cues
 - Difference in sound relative to range from observer
 - Head movements (otherwise ITD and ILD are same)

Sound Localization

• <u>https://www.youtube.com/watch?v=FIU1bNSlbxk</u>

Sound Localization (Azimuth Cues)

Pinnae Cues

- The outer ears also modify the sound
- Help to deal with front/ back confusion
- Primary Cue for Elevation
- Very Individual, we "learn" our ears during childhood.

HRTF (Elevation Cue)

- Pinna and head shape affect frequency intensities
- Sound intensities measured with microphones in ear and compared to intensities at sound source
 - Difference is HRTF, gives clue as to sound source location

Accuracy of Sound Localization

People can locate sound

- Most accurately in front of them
 - 2-3° error in front of head
- Least accurately to sides and behind head
 - Up to 20° error to side of head
 - Largest errors occur above/below elevations and behind head
- Front/back confusion is an issue
 - Up to 10% of sounds presented in the front are perceived coming from behind and vice versa (more in headphones)

BUTEAN, A., Bălan, O., NEGOI, I., Moldoveanu, F., & Moldoveanu, A. (2015). COMPARATIVE RESEARCH ON SOUND LOCALIZATION ACCURACY IN THE FREE-FIELD AND VIRTUAL AUDITORY DISPLAYS. In*Conference proceedings of*» *eLearning and Software for Education «(eLSE)*(No. 01, pp. 540-548). Universitatea Nationala de Aparare Carol I.

How can we generate sound

- Record and playback real sounds
- Or samples of them
 - E.g speech, or musical instruments
- Build a virtual model and generate sounds
- What about in 3D?

3D Synthetic Sound

- An extension on Stereo Sound
 - Vary sound intensity in each ear
- Can apply to speaker array
 - Requires calibration
- Or virtually over headphones

Vector Base Amplitude Panning

- Divide a virtual sound source's signal among the three loudspeakers nearest to source direction
- Can be realized with any number of loudspeakers

http://legacy.spa.aalto.fi/research/cat/vbap/

Virtual 3D

- Builds an HRTF (Head Related Transfer Function)
- Functions map how sound changes as it interacts with the head.
- Creates filters at different angles
- Can be individualised or Generalised -> GHRTF

Virtual 3D Audio

al Source

GHRTFs are most common

- Built into smartphones now
- Programmed using an OpenGL model
- I-HRTFs are better
- But direction is comparable, not elevation velocities
- Can combine with sensors to create AAR

(Audio Augmented Reality)

Sound in the user interface

- Output: Auditory Display
 - analogous to visual display, but sound is a temporal medium
 - sonification = representing information with sound
 - continuous sound: system state / object property
 - transients: events
- Input: Sound Recognition
 - analysing sound structure
 - interpreting as events / input values

more info & some examples: <u>http://www.icad.org/audio.php</u>

Types of Audio

- Speech
- Music
- Sound Effects
- Encoded Representations
 - Earcons
 - Auditory Icons
 - Musicons
 - Spearcons
- Sonification
 - Direct Parameter Mapping

Auditory Icons

- "Everyday sounds mapped to computer events by analogy with everyday sound-producing events" Gaver (1989)
- Familiar sounds map to computer events
 - E.g. breaking glass for error
 - Lots of material properties for selection of windows
- Application in many scenarios but sometimes difficult to get the right sounds.

Earcons

- "non-verbal audio messages used in the usercomputer interface to provide information to the user about some computer object, operation, or interaction". - Blattner (1989)
- Essentially, short musical sounds that are systematically altered to encode information
- Mapping is abstract, but encoding allows a lot of information in just a few rules

Example of mapping features to sounds

Theme Park Rides

Just need to learn the rules and can understand any

Spearcons

- Walker et al. (2006)
- Earcons vs Auditory Icons Problem
- Solution -> Speeded up Speech
- Users can easily pickup and retain these sounds
- Useful in e.g. menus?

Musicons

- McGee-Lennon et al. (2011) studied home reminders
- REALLY short snippets of music (< 0.1 sec)
- Found high accuracy in remembering (94%)
- Participants treated music as memes
 - Friends theme -> Putting the trash out
- People will form their own mappings

Sonification

- The use of non-speech audio to perceptualise data
 - Generally considered continuous data (e.g. graphs)
- You've seen an example in Tangible Graph Builder
 - Great for VI users
 - · Used in "big data"
 - Or non-visual scenarios (navigation, heart rate monitoring?)
- Usually uses direct parameter mapping
- 1 data parameter => 1 auditory attribute

https://www.youtube.com/watch?v=dplpCW-P77o

Auditory Graph

http://dnasonification.org

Big Data Sonification

FulbrighTED: Discovery 2020

DNA Sonification Kärt Tomberg & Robert Alexander

University of Michigan Medical School

Where to Use Sound

Advantages

- Sound in Omni-directional
 - · Don't need to attend to it
- · Can also be discrete
- Selective attention
- Disadvantages
 - Annoying
 - Attention Grabbing
 - · Can take away from the environment
 - Encoded sound (sometimes) to be learned

CONTINUES