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Week 4-2

LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems on the topics of week 4:

ς  Stability of structure, principle of virtual work for large displacements, Green-

Lagrange strain measure

ς   Principle of virtual work for stability analysis and stability analysis by FEM

ς Non-linear stability term element contributions for beam and plate elements.



Week 4-3

3.1 NON-LINEAR ELASTICITY

Balance of mass (def. of a body or a material volume) Mass of a body is constant

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. 

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular

momentum within a material volume equals the external moment resultant acting on the

material volume. 

Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)



Week 4-4

 DISPLACEMENT OF A SOLID BODY

Assuming equilibrium on the initial domain ς↓,  the aim is to find a new equilibrium on

the deformed domain ς, when e.g. external forces acting on the structure are changed.

The local forms of the balance laws are concerned with the deformed domain which

depends on the displacement! This brings a severe non-linearity into the boundary value

problem for the displacement components.

( , , )u x y z↓ ↓ ↓
θ

P

O

tdA
θ

ς

P

O

x↓
z↓
z

y↓

fdV
θ

ς↓

∝ς
∝ς↓

,x x↓

,z z↓

,y y↓



Week 4-5

DESCRIPTION OF MOTION

In solid mechanics, displacement with respect to the initial geometry ( 0t < )  is  used  in

description of motion. Particles are identified by the material coordinates ( , , )x y z↓ ↓ ↓ .
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Displacement vanishes at the initial geometry 0t <   so  that x x< ↓, y y< ↓, and z z< ↓.

Therefore, particles of the body can also be identified by ( , , )x y z  of the initial geometry so

that the motion is described by ( , , , )xu x y z t , ( , , , )yu x y z t , and ( , , , )zu x y z t .
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PRINCIPLE OF VIRTUAL WORK

Principle of virtual work int ext 0W Wχ χ∗ < uχ!
θ  is concerned with the deformed domain

ς . To avoid the complications due to a non-constant domain, the description of motion (a

is used to express all quantities in the Cartesian ( , , )x y z ,system of the initial geometry:
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The Green-Lagrange strain measure E
σ

 is non-linear. Also, the PK2 stress S
σ

 differs from

the Cauchy (true) stress ρσ .
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GREEN-LAGRANGE STRAIN MEASURE

The Green-Lagrange strain has the components (in the basis of the initial geometry)
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.

Green-Lagrange E
σ

gives zero strain in a rigid body motion, whereas linear strain δ
σ  does

not. Linear strain δ
σ can be taken as an approximation to E

σ

 valid when strains and

rotations of material elements are small!
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ELASTIC MATERIAL

Under the assumption of large displacement and small strains the Green-Lagrange strain

measure does not differ much from the linear setting with small displacements and small

strains. Constitutive equations
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with material parameters C  (which replaces E), µ , and / (2 2 )G C µ< ∗  are same as those

of the linear case, are assumed to simplify the setting. Also, the uni-axial and two-axial

(plane) stress and strain relationships follows just by using strains instead of engineering

strains and C  instead of E .
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3.2 STABILITY OF STRUCTURE

In stability analysis, the goal is to find the critical value crp of parameter p  (force, load,

displacement etc.) which makes the solution non-unique so that several equilibrium

positions may coexist.
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BEAM BUCKLING

In the simplified stability analysis, only the most significant non-linear terms are retained.

By taking into account the xz , plane bending moment due to the axial force, equilibrium

of a beam element

0dM dwQ N
dx dx

, ∗ < ]0, [x L⊆ ,

0z
dQ f
dx

∗ < ]0, [x L⊆ ,

where
2

2
d wM EI
dx

< ,  .

The more precise equilibrium equation takes into account coupling of the bar and bending

modes of beam (bending is affected by the bar mode but not the other way around).

z

xΧ

x N N∗ Χ

Q Q∗ Χ

M M∗ Χ

M
N

Q



Week 4-11

∂ The table by George William Herbert - Own work, after Table C.1.8.1 in Steel

Construction Manual, 8th edition, 2nd revised printing, American Institute of Steel

Construction, 1987, CC BY-SA 2.5, is based on the equilibrium equation

4 2

4 2 0d w d wEI p
dx dx

∗ < ]0, [x L⊆ ,

for the xz , plane bending with a compressive N p< , . The different values in the

table are due to different boundary and symmetry conditions imposed on the generic

solution

sin( ) cos( )p pw a bx c x d x
EI EI

< ∗ ∗ ∗ .

https://commons.wikimedia.org/w/index.php?curid=1211310
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PLATE BUCKLING

In the simplified stability analysis, only the effect of the thin-slab mode on bending is

accounted for (much in the same manner as with the beam model). Assuming that the

material coordinate system is placed at the mid-plane, material is homogeneous, transverse

distributed external loading vanishes, and that the in-plane stress resultants are constants,

the outcome is the bending equation

4 4 4 2 2 2

4 2 2 4 2 2( 2 ) ( ) 0xx xy yx yy
w w w w w wD N N N N

x yx x y y x y
∝ ∝ ∝ ∝ ∝ ∝

∗ ∗ , , ∗ , <
∝ ∝∝ ∝ ∝ ∝ ∝ ∝

( , )x y ⊆ς ,

in which 3 2/ (12 12 )D Et µ< , .  In  the  model,  bending  mode  is  affected  by  the  thin  slab

mode but not the other way around. Therefore, the thin slab equations can be solved

independently for the in-plane stress resultants.
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REFINED VIRTUAL WORK DENSITIES

In the simplified stability analysis, displacement is assumed to be small so that the

difference between the initial and deformed geometry can be omitted. The refined virtual

work density expressions contain the additional coupling terms

Beam:
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The coupling affects only the bending mode as the variations are concerned with the

bending modes.
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3.3 STABILITY ANALYSIS

ς  Model the structure as a collection of beam, plate, etc. elements. Derive the element

contributions eWχ  and express the nodal displacement and rotation components of the

material coordinate system in terms of those in the structural coordinate system.

ς  Sum the element contributions to end up with the virtual work expression of the

structure e
e EW Wχ χ⊆<  . Re-arrange to get T[ ( ) ]Wχ χ< , ,a R a F .

ς  Use the principle of virtual work 0Wχ < χ! a, fundamental lemma of variation

calculus for nχ ⊆a €  to deduce the equilibrium equations ( ) 0, <R a F . Solve for the

bar/thin slab modes from the linear part and substitute into the non-linear part to get

( ) 0p ρ∗ <K K a .  Finally,  find  the  values  of p  making the solution non-unique. The

smallest of the values for p  is crp .
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BAR MODE

Assuming that 0v < , 0w < , 0ε <  and a linear approximation to the axial displacement

( )u x  in terms of the nodal displacements 1xu , 2xu , virtual work expressions of the internal

and external forces take the forms
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BENDING MODE (xz-plane)

Assuming that 0u < , 0v < , 0ε <  and a cubic approximation to the transverse

displacement ( )w x  in terms of point displacements 1zu , 2zu  and rotations 1 2,y yπ π :

T
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BENDING-BAR COUPLING (xz-plane)

Assuming that 0v < , 0ε < , a cubic approximation to ( )w x  in terms of nodal

displacements/rotations 1zu , 2zu , 1yπ , and 2yπ , and a linear approximation to ( )u x  in

terms of the nodal displacements 1xu , 2xu
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EXAMPLE 3.1. Consider a simply supported beam loaded by a compressive axial force

p acting on the right end. Assuming that displacement is confined to the xz ,plane, use a

single beam element to determine the buckling force crp . Cross-section properties A, I

and Young’s modulus E  are constants.

Answer cr 212 Ep
L

< (exact to the model 2
cr 2

EIp
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∂ The non-zero nodal displacements/rotations are 1Yπ , 2Yπ , and 2Xu . Virtual work

expression for the beam 1 int staW W Wχ χ χ< ∗  and the point force 2Wχ  are (here

2 1 2( ) / /x x XN EA u u h EAu L< , < )

T T
1 1 1 1 12

2 2
2 2 2 2

4 2 4 1
2 4 1 430

Y Y Y YX
X X

Y Y Y Y

EAuEA EIW u u
L L

χπ π χπ π
χ χ

χπ π χπ π
,          < , , ,          ,          

,

2
1XW p uχ χ< , .

∂ Virtual work expression is sum of the element contributions

T
2 2

2
1 1

2 2

0 0 0 0 0
1[ 0 4 2 0 4 1 ) 0 ]

30
0 2 4 0 1 4 0
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X

Y Y

Y Y

u EA u p
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.

∂ Principle of virtual work and the fundamental lemma of variation calculus imply that
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2
2

1
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0 0 0 0 0
1( 0 4 2 0 4 1 ) 0 0
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0 2 4 0 1 4 0

X
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Y

Y

EA u p
EAuEI EI

L
EI EI

π
π

       
      ∗ , ∗ <      
   ,          

.

∂ The remaining task is to solve the (non-linear) equations for the values of the loading

parameter p  making the solution non-unique and the corresponding modes. The first

equation gives (solving the axial force(s) N of  the  beams as  functions  of  the  loading

parameters is always the first step)

2
1 0XEAu p
L

∗ < ∨ 2X
pLu
EA

< , .

∂ When the solution is substituted there, the remaining equations simplify to the

homogeneous form
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1

2

4 2 4 1
( ) 0

2 4 1 430
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, <    ,     

.

∂ A non-trivial solution (zero rotations satisfy the equations always) is possible only if

the matrix in parenthesis is singular

2 24 2 4 1
det( ) (4 4 ) (2 ) 0

2 4 1 430 30 30
EI pL EI pL EI pL
L L L
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∂ The smallest of the values is the critical one

cr 212 EIp
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< . 
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∂ Stability analysis by the Mathematica code gives
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EXAMPLE 3.2. Consider the truss shown in which elements 1 and 3 are modelled as bars

and element 2 as a beam. Determine the critical value of force F for buckling of the beam

element. Cross-sectional area of element 1 and 3 are 8A. Cross sectional area of element

2 is A and the second moment of area I. Young’s modulus of the material is E. Assume

that 3 2Y Yπ π< , .
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∂ The non-zero nodal displacements/rotations are 2Yπ , 3 2Y Yπ π< , , 2Zu , and 3Zu .

Virtual work expressions of the elements are (here the axial force is given by
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T
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∂ Virtual work expression is the sum of element contributions
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∂ Principle of virtual work and the fundamental lemma of variation calculus imply that
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∂ The remaining task is to solve the (non-linear) equations for the values of the loading

parameter F  making the solution non-unique (the corresponding modes might be of

some interest also). The first two equations give (solving the axial force(s) N of  the

beams as functions of the loading parameters is always the first step)

3

2

2 1 0
0

1 2
Z

Z

uEA
u FL
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∨ 3

2

1
23
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u FL
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.

∂ When the solution is substituted there, the axial force expression and the remaining

third equation give

3 2( )
3Z Z

EA FN u u
L

< , < , ⇑
2

2
1(4 ) 0
3 3 Y

FLEI π, <  .

∂ A non-trivial solution 2 0Yπ ÷  is possible only if



Week 4-28

2
4 0

9
FLEI , < ∨ cr 236 EIF

L
<  . 

∂ Stability analysis by the Mathematica code gives
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3.4 ELEMENT CONTRIBUTIONS

Virtual work expressions for the beam and plate elements combine virtual work densities

of the model and approximation depending on the element shape and type. To derive the

expression:

ς   Start with the virtual work densities intwχ ς , stawχ ς , and extwχ ς of the formulae

collection.

ς  Represent the unknown functions by interpolation of the nodal displacement and

rotations (see formulae collection). Substitute the approximations into the density

expressions.

ς  Integrate the virtual work density over the domain occupied by the element to get Wχ .
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ELEMENT APPROXIMATION

In MEC-E8001 element approximation is a polynomial interpolant of the nodal

displacement and rotations in terms of shape functions. In stability analysis, shape

functions depend on x, y, and  z.

Approximation T<u N a

Shape functions T
1 2{ ( , , ) ( , , ) ( , , )}nN x y z N x y z N x y z<N ϑ

Parameters T
1 2{a a a }n<a ϑ

Nodal parameters a { , , , , , }x y z x y zu u u π π π⊆  may be just displacement or rotation

components or a mixture of them (as with the beam model).

always of the same form!
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BEAM MODEL

Coupling term: sta d v dv d w dww N N
dx dx dx dx
χ χχ ς < , ,  ,  where duN EA

dx
< .

The additional coupling term is part of the virtual work density of internal forces
int sta ext( )w w w wχ χ χ χς ς ς ς< ∗ ∗  and assumes that 0y z yzS S I< < < . The coupling of the

bar and bending modes is the most significant non-linear term.

zf

x

h
2 2,z zu π

z

2 2,y yu π1 1,y yu π 1 1,z zu π

2 2,x xu π1 1,x xu π



Week 4-32

∂ The coupling terms of the bending and bar modes follow from the generic non-linear

expression and the kinematic assumption of the beam model in xz ,plane bending

/ /xu u zdw dx ydv dx< , , , ( )yu v x< ,  and ( )zu w x< . First, the Green-Lagrange axial

strainn and stress-strain relationship simplify to (only the most significant terms)

2 2
2 2

2 2
1 1( ) ( )
2 2xx

du d w d v dv dwE z y
dx dx dxdx dx

< , , ∗ ∗   and xx xxS CE< ,

∂  Assuming that 0y z yzS S I< < < , integration over the cross-section gives the virtual

work densities of the bar mode, bending modes, and the additional coupling term

(again, only the most significant terms for stability analysis)

sta
xx xxA

d v dv d w dww E S dA N N
dx dx dx dx
χ χχ χς < , < , ,〉  ,  where duN EA

dx
< .
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∂ Derivation of the coupling term, based on the virtual work of the external axial force,

is also possible. The axial displacement of the free end of a cantilever due to the

bending only can be obtained by considering an inextensible material element of length

xΧ . The length change in the direction of the force is given by (Taylor series
2cos( ) 1 / 2x x< , ∗ϑ)

cos yL x x πΧ < Χ , Χ ⇑

2 21 11 cos ( )
2 2y y

dL dw
dx dx

π π< , ≡ < , ⇑

2
0

1( ) ( )
2

L dwu L dx
dx

< ,〉 ⇑

0
( )

L d w dwu L dx
dx dx
χχ < ,〉 .

yπ
x

z
xΧ

xΧ

N

LΧ

x
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∂ Virtual work of the external force due to the bending effect is therefore given by

sta
0

( )
L d w dwW N u L N dx

dx dx
χχ χ< < 〉 .

∂ In the simultaneous bending in both directions, the length change of an inextensible

material element xΧ  in the axial direction is given by

2 2 2 21 1 1cos cos (1 )(1 ) ( )
2 2 2y z y z y zL x x x x xπ π π π π πΧ < Χ , Χ ≡ Χ , Χ , , ≡ Χ ∗ ⇑

1 ( )
2

dw dw dv dvL x
dx dx dx dx

Χ ≡ Χ ∗ ⇑
0

( ) ( )
L d w dw d v dvu L dx

dx dx dx dx
χ χχ < , ∗〉

Hence, the coupling term is the sum of coupling terms of the planar problems!
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BENDING-BAR COUPLING (xz-plane)

Assuming that 0v < , 0ε < , a cubic approximation to ( )w x  in terms of nodal

displacements/rotations 1zu , 2zu , 1yπ , and 2yπ , and a linear approximation to ( )u x  in

terms of the nodal displacements 1xu , 2xu ,

T
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∂   Virtual work density of the bending-bar mode coupling term in the xz , plane is given
by

sta d w dww N
dx dx
χχ ς < ,   where duN EA

dx
<

and the cross-sectional area A  and Young’s modulus E  may depend on x . Element

approximations (simplest possible) are 2 1/ ( ) /x xdu dx u u h< , and
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∂   Integration over the domain occupied by the element gives
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sta sta
0 0
h h d w dwW w dx N dx

dx dx
χχ χ ς< < ,〉 〉 ( duN EA

dx
<  is constant here) ⇑

T
1 1

2 21 1sta

2 2
2 22 2

36 3 36 3

3 4 3
36 3 36 330
3 3 4

z z

y y

z z

y y

h hu u
h h h hNW

u h h uh
h h h h

χ
χπ π

χ
χ
χπ π

, , ,    
    , ,    < ,     ,       , ,     

, where 2 1x xu uN EA
h
,

< . 

∂   The non-linear additional term couples the bending and the bar modes of the beam. In

the one-sided coupling, bending mode is affected by the bar mode but not vice versa.



Week 4-38

BENDING-BAR COUPLING (xy-plane)

Assuming that 0u < , 0w < , 0ε < , and a cubic approximation to ( )v x  in  terms of  nodal

displacements/rotations 1yu , 2yu , 1zπ , and 2zπ , and linear approximation to ( )u x  in terms

of nodal displacements 1xu , 2xu ,

T
1 1

2 2
sta 1 1

2 2
2 2

2 2

36 3 36 3

3 4 3
36 3 36 330

3 3 4

y y

z z

y y

z z

h hu u
h h h hNW

u uh hh
h h h h

χ

χπ π
χ

χ

χπ π

,    
    , ,    < ,     , , ,       , ,     

, where 2 1x xu uN EA
h
,

< .

ux2, Fx2ux1, Fx1

x
E,A,Izz

h
2yu

y

2zπ1zπ 1yu
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PLATE MODEL

Virtual work density combines the thin-slab and plate bending modes. Assuming that the

material coordinate system is placed at the geometric mid-plane, bending mode is affected

by the thin slab mode but not vice versa. The additional coupling term for stability

analysis

Coupling:
T

sta / /
/ /

xx xy

yx yy

N Nw x w x
w

w y N N w y
χ

χ
χς

 ∝ ∝ ∝ ∝   < ,     ∝ ∝ ∝ ∝     
, where Ζ ∴

xx xx

yy yy

xy xy

N
N t E

N
ρ

δ
δ

φ

   
      <   
   
      

depends on the in-plane stress resultants xxN , yyN , and xy yxN N<  of the thin-slab mode.

The additional coupling term is part of the virtual work density of internal forces
int sta extw w w wχ χ χ χς ς ς ς< ∗ ∗ . As stability term affects only the bending mode, dependence

of the stress resultants on the loading parameter can be obtained from a thin-slab problem.
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∂ The coupling term of the plate bending and thin-slab loading modes follows from the

generic non-linear virtual work density of the internal forces and the kinematic

assumptions of the Kirchhoff plate model /xu u z w x< , ∝ ∝ , /yu v z w y< , ∝ ∝ ,   and

( , )zu w x y< . If only the terms used already in the beam case are accounted for, Green-

Lagrange strain and the corresponding second Piola-Kirchhoff stress components

2 2 2

2 2 2

2

/ ( / ) / 2/
/ / ( / ) / 2

/ / ( / )( / )2 2 /

xx

yy

xy

w x w xE u x
E v y z w y w y

u y v x w x w yE w x y

     ∝ ∝ ∝ ∝∝ ∝             ≡ ∝ ∝ , ∝ ∝ ∗ ∝ ∝       
       ∝ ∝ ∗ ∝ ∝ ∝ ∝ ∝ ∝  ∝ ∝ ∝          

,

Ζ ∴
2

xx xx

yy yy

xy xy

S E

S E E

S E
ρ

   
      <   
   
      

.
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∂  Assuming that the material coordinate system is placed at the geometric mid-plane,

integration of the virtual work density gives the virtual work density of the thin-slab

mode, virtual work density of plate bending mode, and the coupling term (considering

only the most significant terms)

T
sta / /

/ /
xx xy

yx yy

N Nw x w x
w

w y N N w y
χ

χ
χς

 ∝ ∝ ∝ ∝   < ,     ∝ ∝ ∝ ∝     
,

 where the in-plane stress resultants are given  by

Ζ ∴
/
/

/ /

xx

yy

xy

N u x
N t E v y

u y v xN
ρ

  ∝ ∝     < ∝ ∝   
   ∝ ∝ ∗ ∝ ∝   

.
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EXAMPLE 3.3. Determine the critical value of the in-plane loading crp  making the plate

of the figure to buckle. Use the plate model and the continuous polynomial approximation
2

0( , ) ( / )(1 / )(1 / )w x y a xy L x L y L< , , . Assume that the edge conditions are such that

solution to the in-plane stress resultants is given by xxN p< ,  and 0yy xyN N< <

(solution to the thin-slab problem).

Answer
3

cr 2244
1 (12 )

Etp
L µ

<
,

   (exact 2
3 3

cr 22 2 24 39.5
(1 ) 1 (1 )12 2
E Etp t

L L
ο

µ µ
< ≡

, ,
).

x,X

y,Y
L

L

E, ν, ρ, t pp
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∂ Assuming that the material coordinate system is chosen so that the linear plate bending

and thin slab modes decouple, the plate model virtual work densities of the bending

mode and the coupling term are given by ( xxN p< ,  and 0yy xyN N< <  )

T2 2 2 2

int 2 2 2 2

2 2

/ /1 0
/ 1 0 /

0 0 (1 ) / 22 / 2 /

w x w x

w w y D w y

w x y w x y

χ µ
χ χ µ

µχ
ς

   ∝ ∝ ∝ ∝        < , ∝ ∝ ∝ ∝    
   ,  ∝ ∝ ∝ ∝ ∝ ∝      

 where
3

212 1
t ED

µ
<

,
,

T
sta / /

/ /
xx xy

yx yy

N Nw x w x w ww p
w y N N w y x x

χ χ
χ

χς
 ∝ ∝ ∝ ∝    ∝ ∝

< , <    ∝ ∝ ∝ ∝ ∝ ∝     
.

∂ When the approximation is substituted there, virtual work expressions of the plate

bending mode and that of the coupling between the thin-slab and bending modes

simplify to
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int int
0 0 0 02

22
45

L L
W w d Da a

L
xdy χχ χ ς< < ,〉 〉 ,

sta sta
0 0 00

1
90

L L
W w d axdy paχ χχ ς< <〉 〉 .

∂ Virtual work expression is the sum of the two parts

0 02
int sta 22 1( )

45 90
Da p a
L

W W Wχ χ χ χ ,< ∗ < , .

∂ Principle of virtual work 0Wχ < χ! a  and the fundamental lemma of variation calculus

give

0 02
22 1( ) 0
45 90

Da p aW
L

χχ < , , < 0aχ! ⇑ 02
22 1( )
45 90

0D p a
L

, < .
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For a nontrivial solution 0 0a ÷ , the loading parameter needs to take the value

cr 244 Dp
L

<  . 
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STABILITY ANALYSIS OF TRUSS SIMPLIFIED

If the beams are connected by joints not capable for transmitting moments, one may use

the fact that the bar model predicts the axial forces correctly. Then, the first step is a linear

displacement analysis for finding the displacements of the nodes and thereby the axial

forces ( )N p  as functions of the loading parameter. After that, the buckling loads of each

beam under compression follows from the buckling criterion (N is negative in

compression)

2
2( ) EIN p

L
ο, <

for a simply supported beam. The first beam to buckle (or the smallest p  given  by  the

conditions above) defines the critical load crp .
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EXAMPLE 3.4. A beam truss is loaded by a vertical point force having magnitude F and

acting in the positive or negative direction of the Z-axis. Determine the critical load

magnitude crF  for buckling of beam 1 or 2 of the truss. Cross-sectional area of element 1

is A and that for element 2 8A, Young’s modulus E is constant, and the second moment

of area is I for both beams. The beams are connected by frictionless joints.

Answer
2

cr 28
EIF
L

ο
<   when 0F ; .

X
Z

L

3

21

2

1

L
F

3

x

x

z

z
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∂ The relationships between the nodal displacement components in the material and

structural systems are 1 0xu <  and 2 2x Xu u< . Element contribution 1Wχ  to the virtual

work expression of the structure is

T
1

2 2
2 2

0 01 1 0
( )

1 1 0 X X
X X

EA EAW u u
u uL L

χ χ
χ

,      
< , , < ,      ,      

.

∂ For element 2, 3 0xu <  and 2 2 2( ) / 2x X Zu u u< ∗ . Element contribution takes the

form

T
2

2 2 2 2

0 01 1 01 8 1( )
1 1 02 2 2X Z X Z

E AW
u u u uL

χ
χ χ

,      
< , ,      ∗ ∗,      

∨

2
2 2 2 2( )( )X Z X Z

EAW u u u u
L

χ χ χ< , ∗ ∗ .
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∂ Virtual work expression of the point force follows from the definition of work. The

direction may be up or down and hence F  may also be negative (which means up)

3
2ZW u Fχ χ< .

∂ Virtual work expression of a structure is obtained as the sum of the element

contributions

2 2 2 2 2 2 2( )( )X X X Z X Z Z
EA EAW u u u u u u u F
L L

χ χ χ χ χ< , , ∗ ∗ ∗ ∨

T
2 2

2 2

2 1 0
( )

1 1
X X

Z Z

u uEAW
u u FL

χ
χ

χ
      

< , ∗      
      

.

∂ Using the principle of virtual work 0Wχ < χ! a and the fundamental lemma of

variation calculus
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2

2

2 1 0
0

1 1
X

Z

uEA
u FL

    
, <    

   
∨ 2

2

1
2

X

Z

u LF
u EA

,   
<   

  
.

∂ For buckling of beam 1, the axial force should be compression (negative) and therefore

the external force should be acting downwards.

2 1 2( )x x X
EA EAN u u u F
L L

< , < < , ⇑ 2
cr 2

EIF
L

ο<   when 0F = .

∂ For buckling of beam 2, the axial force should be compression (negative) and therefore

the external force should be acting upwards. When 0F ;

2 3 2 2
8 ( ) 2 ( ) 2

2 x x X Z
E A EAN u u u u F

LL
< , < ∗ < , ⇑

2

cr 28
EIF
L

ο
<  . 


