MEC-E8001 Finite Element Analysis, week 4/2019

1. Virtual work expression of a beam, which takes into account the bar and bending modes and
the coupling between them, gives a non-linear equation system for the axial and transverse dis-
placement. Determine the critical load p., causing the beam to buckle if the equation system is

given by

513

1] SPp+sPEAuy, |,
60EI“ZZ +6LEA“X2“ZZ '

EI

Answer p.. = 107

2. Determine the buckling force p.. and the buckled shape of the structure
shown by using one beam element. Displacements are confined to the

xz —plane. Parameters E, 4, and / are constants.

ET

Answer p.. = 30? , W= k(%)2 (1 —%) (k is arbitrary)

3. Determine the buckling force p., of the beam shown by using one beam @
element. Displacements are confined to the xz —plane. The cross-section §

and material properties 4, /, and E are constants.

EI 60
Answer pcr=?4—5(13—2\/§)

4. Determine the buckling force p.. and the buckled shape of the structure
shown by using one beam element. Displacements are confined to the
xz —plane. Parameters E, 4, and / are constants. L

Answer p, =12 w(x):k%(l—%) (k is arbitrary)

2’

5. Beam structure of the figure is loaded by opposite forces of magnitude p
acting on nodes 2 and 3. Determine the buckling force p. of the structure
using two beam elements. Displacements are confined to the xz— plane.
The cross-section properties of the beam A, / and Young’s modulus of the

material £ are constants.




EI

Answer p.. = 20?

The simply supported uniform beam shown is di-

vided into two identical beam eclements, each of 1 @ 2 @ 3 p

length L/2. Displacements are confined to the =

xz —plane. Cross-section properties are A and [

and Young’s modulus of the material £ . Determine
the buckling load p... Assume that rotation angles
satisfy eYl = —Qy3 and 9Y2 =0.

240 EI

Answer =
Per = 132031 12 J:X

Find the density p. causing the beam of the figure to buckle in £
xz —plane. Start with the virtual work density taking into account the @

interaction of the bar and bending modes. Choose first Sw=0 in the L

virtual work density to solve for the axial displacement and the axial X

force N . After that, choose du =0 to find the virtual work expression

taking into account the internal and coupling parts.

Answer p.. = 120 £ F
C 1342431 4l 0% al
IOl
5 X
The plane frame of the figure consists of a rigid body 3 R |
and beam elements 1 and 2. The joints at nodes 2 and 3 L

are frictionless. Determine the critical value of the force @

F acting on the rigid body at distance aL a €[0,1] I L
from node 3 making the frame to buckle laterally. The .
cross-section properties 4 and / and Young’s modu- |_z

lus of the material £ are constants.

Answer F = E—2[§(13 231~ 4.97E—21
>3 L

Determine the critical value of force F' causing

some beam of the truss shown to buckle. First, use

the bar model to solve for the nodal displacements
and thereby the axial forces as functions of the
loading F' (assumed to be positive). After that, use
criterion N(F)= 72EI / h* to find the first beam
to buckle and the critical value £ . Cross-

sectional areas of beams 2 and 3 are \/gA and that

of beam 1 24. The second moments of cross-

sections / and the Young’s modulus E of the material are constants.

3




10.

1 EI
Answer F_, =§7r2 — (beam 1 buckles)
L

Determine the critical value of the in-plane load-
ing p. making the plate shown to buckle. Use
w(x,y)=agpsin(zwx/ L)sin(zy /L) as the approx- /7=
imation and assume that N, . =—-p, N = 0, and /

N,, =0. Problem parameters E, v, p and ¢ are V>

constants. Integrals of sin and cos satisfy

L
.[OL sin(iﬂ%)sin(jﬂ%)dxzé% and .[() COS(iﬂ%)COS(jﬂ%)dx=£5 .

Pt

CE (zy

Answer =4—
Per 1212 L




Virtual work expression of a beam, which takes into account the bar, bending, and the coupling of
the modes, gives a non-linear equation system for the axial and transverse displacement. Determine

the critical load p.. causing the beam to buckle if the equation system is given by

1] SPp+sPEAuy, |,
513 |60Eluy + 6 LEAu 4, '

Solution
Although the equation system is non-linear, it can be solved in two steps for the critical load. Find-
ing the normal forces (or axial displacements) as function of the load parameter is the first step. The

first equation gives

A L
SPp+SLEAUy, =0 < LA vp=0 o uy,=--PL
L EA
With this expression, the second equation simplifies to
L
60E1“22 + 6LEAI/IX2MZZ =0 = (60E1 —6LEA%)UZZ =0 < (60E1 —6L2p)1/122 =0

A non-trivial solution uy, # 0 is possible only if

60El —6°p=0 < pZIO%. &



Determine the buckling force p.. and the buckled shape of the structure shown :
by using one beam element. Displacements are confined to the xz —plane. Pa-
rameters E, 4, and [ are constants. :
1 . l 27
Solution
The non-zero displacement/rotation components of the structure are 6,, =6y, and u,y) =uy;. In

this case, the normal force in the beam N =—p can be deduced without calculations on the axial
displacement and it is enough to consider only the bending and coupling terms of the virtual work

expression. As buckling is confined to the xz —plane

o " [12 -6L -12 —6L] 36 3L -36 -3L|
0 | Er|-6L 4* 6L 20*| p |-3L 4% 3L -I?
0 ’|-12 6L 12 6L | 30L|-36 3L 36 3L
66y 6L 2I* 6L 4L 3L -1F 3L 4| (2

SW = -

El, 0 P 42
OW = =00y ,(— 4L ———4L" )0y, .
ya( e 0L )0y
Principle of virtual work and the fundamental lemma of variation calculus imply
El, 2> P 42
— 4L ———4L" )0y, =0.
( L3 30L ) Y2

A non-trivial solution 0y, # 0 is obtained only if

El . » p .» EI
Al ——L 4 =0 = =30—. €
2300 Per =202
The shape function associated with 0y, is N = —x?/L+x>/I?. Therefore, the buckled shape is

given by (save an arbitrary multiplier)



Determine the buckling force p.. of the beam shown by using one beam ele- @
ment. Displacements are confined to the xz —plane. The cross-section and mate-

rial properties 4, I, and E are constants.

Solution
The non-zero displacement/rotation components of the structure are 6,5 =6y, u,, =uy, and

U,y = Uy, . As the normal force in the beam

N=-p

can be deduced directly, it is enough to consider only the bending and coupling terms of the virtual

work expression. For buckling in the xz —plane

o7 [12 -6L -12 -6L] 36 3L -36 -3L] (
swo_| O | EI|-6L 4> 6L 20| p |B3L 4L 3L —LZ) ol

Sug,| 3| -12 6L 12 6L | 30L|-36 3L 36 3L | |ug,

66y, | 6L 207 6L 4I* | 3L -1* 3L 4r* ] \On2

- {&lzz}T Erf12 6L , [36 3L ){uzz}
86y, ) IP|eL 4r*] 30L|3L 41| |6y2)
Principle of virtual work and the fundamental lemma of variation calculus imply (notice the scaling

of the rotation and the force which make the two matrices dimensionless and simplify the eigenval-

ue calculations)

12 6 36 3 2
( -1 ) “22 L _ 0 where A= pL .
6 4 3 4|16y, 30E]

A non-trivial solution is obtained only if

12 6 36 3] PN 2
det({6 4}—/{3 4})_(12 36A)(4—42)-(6-31)>=0 = /1_45(13izﬁ).

The smallest of the values is the critical one

EI

_EI60 EI
)2

Der =245 €

(13—24/31) ~ 2.48



Determine the buckling force p.. and the buckled shape of the structure shown @
by using one beam element. Displacements are confined to the xz—plane. Pa-

rameters E, A, and [ are constants.

Solution
The non-zero displacement/rotation components of the structure are and 6,,; =6y, 6, =6y, and
U,y = Uy, . The normal force in the beam N =—p can be deduced without calculations on the axial
displacement. Therefore, it is enough to consider only the bending and coupling terms of the virtual

work expression. As buckling is confined to the xz —plane

o " [12 -6L -12 —6L] 36 3L -36 -3L| (
s — | 90 L 6L 41> 6L 20*| p |-3L 4% 3L —Lz) Oy,
== Y - =
0 [} -12 6L 12 6L | 30L|-36 3L 36 3L 0
56y | —6L 2[* 6L 417 3L -I* 3L 41| On2
T —
SW = — 50Y1 (2 4 2 _p_L 4 —1) eYl
SOyr| "L |2 4] 30|-1 4|6y,
According to the principle of virtual work
(24 2_p_L4 —1)0“ 0
L2 4| 30[-1 4[|6y,]
A homogeneous equation system has a non-trivial solution only if the matrix is singular
4%_4% 2%+§_(L) El  pL El pL 2
det( y=(A2 4 P22 B PRy g o PR ) 601
El pL ,EI ,pL L 30 L 30 EI

L 30 L 30
The smallest eigenvalue gives the critical loading

El
pCI’ :12? 6

The corresponding eigenvector (mode) is given by

2 EL_ 4 Pal S EL Pyl
L 30 L 30 {9Y1}:7_2ﬂ{1 1}{91/1}:0 - {le}:{l} (say)
HEL Pl 4 EI 4Pl |(Oy2) 30 L1 1](6ys Oy2] -1

L 30 L 30



Shape of the buckled beam follows from approximation when the mode is substituted there (see the

formulae collection)

b T
(1-8)"(1+28) 0
2
w(x) = L(l_g)f N =—L(E-1E where E=2 . €
(3-28)¢ 0 L
ree-n | U




Beam structure of the figure is loaded by opposite forces of magnitude p act-
ing on nodes 2 and 3. Determine the buckling force p. of the structure using
two beam elements. Displacements are confined to the xz— plane. The cross-

section properties of the beam A4, / and Young’s modulus of the material £

are constants.

Solution

The axial forces in the beams follow directly from a free body diagram and it is enough to consider
virtual work associated with the bending and interaction modes. The non-zero displacement/rotation

components of the structure are 8y, and Oy;.

For beam 1, 6,

Oy, and 6

y3 =

Oy3 and the axial force acting on the element N =—p (negative

means compression) follows from a free-body diagram. Therefore

T

12

-12

0 —6L 0
sypint__ |92 | EI| 6L 47 6L 207 ||Oyy| _ [06ys Y Ei[4 2)[0r,
0 L3 -12 6L 12 6L 0 5ey3 L|2 4 Qy3 ’
60y 3 6L 21> 6L 41 |Or3
01T [36 3L =36 -3L]( ¢
sypsa __|%0r2| N | L 4 3L =17 ||6yy| _[50y tpL[4 -1)[6y,
0 [ 30L|-36 3L 36 3L || 0 80y5| 30|-1 4 |]|6ys
60y 3 3L -1* 3L 417 |13
giving
T
5W1=5Wint+5Wsta=_ 60y, (2 4 2 _p_L 4 _1) Oy
S0y3| L2 4] 30|-1 4] |0y
For beam 2, 6, = 0y, and the axial force N =0. Therefore S =0 and
01T [12 -6L -12 —6L]( o
sp2__) O | EL|-6L 4 6L 207 || 0 | _ [oby Y EI[4 0)[6y,
0 pl-12 6L 12 6L || 0 80yz] L |0 0]|6y3)
60y 6L 217 6L 47 |02

Virtual work expression of structure is the sum of element contributions

- M

Principle of virtual work and the fundamental lemma of variation calculus imply that

06y,
60y

El

L

_rL

SW =Wy sw? =—
30



8 2 L| 4 —1| [6y,
(_ _PE ) -0.
2 4] 30|-1 4] |6ys
In stability analysis the aim is to find the critical values (smallest of them typically) of the load pa-

rameter p such that the solution becomes non-unique. As the equilibrium equations are homogene-

ous, non-zero solution is obtained only if the matrix (above) is singular:

_82_p_L4—1_£_pL pL Elp
det( {2 4} {—1 4}_(81: * )( RRETUNC AT

L € {20,84} .
EI
The smallest of the values is the critical one



The simply supported uniform beam shown is divided
into two identical beam elements, each of length /2. @ @

Displacements are confined to the xz—plane. Cross-

section properties are 4 and / and Young’s modulus

of the material £. Determine the buckling load p,.
Assume that rotation angles satisfy 6y, =—0y3; and
9Y2 = 0 .

Solution
The axial force in the beams follows directly from a free body diagram and it is enough to consider
the virtual work associated with bending and interaction modes. The non-zero displacements and

rotations of the structure are 8y, uy,, and Oy3 =—0y;.

For beam 1, 6, =0y, u.p =uz, and the axial force N =—p (negative means compression) fol-

lows from a free-body diagram. Here 7 =L /2
o 1% [12 -6h —12 —6h]|( o

it __| 901 | E1|-6h 4> 6h 207 ||0y | [ty ! JEL[ 2 3L][on
Suz, | B3| -12 6k 12 6h ||uy, 23 12 ’

0 —6h 21> 6h 4h*|L O

Suyzy Uz

o 1T [36 -3 -36 -3n]( o
T
syt _ )00 | N |3 4’ 3h o -k || 6y ={59Y1} p { I 3L/2H9Y1}

51422 30n| 36 3h 36 3h Uzy 51422 IS_L 3L/2 36 Uzn
0 |3k —h* 3h 4L O
giving
. 50y " EI[ 12 2 0
5W1=5W1nt+5WSta=—{ Yl} (8= L 3L P L 3L/2 ){ Yl}'
Stz 2|30 12| 15L|3L/2 36 | luz

Forbeam 2, u_y =uz,, 0,3 = 6y3 = -0y and the axial force N=-p.As h=L/2

T [12 -6k -12 -6k

Sz, Uz
sy __| 0 | Er|-6h an® 6h 2h%|| 0 z_{a‘em}ngF 314}{@1}
0 Bl-12 6h 12  6h 0 Suzy| 330 12||uz)’
~60y; -6k 2h*  6h 4h* | ~On1
Suy, |7 [36 <3h =36 3h](4,,
J——— N |3k 4n* 3h -h*|| 0 :{5%“}T42{ﬁ SL/{HQH}’
0 30n|-36 3h 36 3h 0 Ouzy| 15L|\3L/2 36 |luz
~60y, 3k -k 3h 4k | 70n

so that



T
. 50 2 2 6
Sugy| (3L 12| 15L|31/2 36 | luzs

Virtual work expression of structure is sum of the element contributions

T
50 2 2 0
5W:5W1+5W2=—{ ”} e e R ){ Yl}
Sz, 2130 12| 15013072 36 | |luz

Principle of virtual work and the fundamental lemma of variation calculus imply that

1Bl 2 3L|_2p| I 3LI2 ){6’y1}_0
230 12) 15L)30/2 36 [ luzn)
As the equilibrium equations are homogeneous, non-zero solution is obtained only if the matrix

(above) is singular:

2 2 2
det(1 i\ £ 3|2 L SLIzy &=§(13izﬁ).
2|3 12| 150302 36 El 3

The smallest of the values is the critical one

16 EI 240 EI EI
P =—(13-231) = =—""_=_2994— €
or 3( )L2 13+2/31 12 12



Find the density p.. causing the beam of the figure to buckle in xz —plane. 1 g
Start with the virtual work density taking into account the interaction of the @
bar and bending modes. Choose first Sw =0 in the virtual work density to L
solve for the axial displacement and the axial force N . After that, choose X

ou =0 to find the virtual work expression taking into account the internal

and coupling parts.

Solution
The displacements/rotations of the structure are u,, =uy;, u, =uy, and 6,5, =-0,. The start-
ing point is the virtual work density

2 2
Swg =—T0U gy _d7ow oy 7w dOWdw o here N = EASY
dx dx  dy? dx? dx dx dx

Which takes into account the bar and bending modes and the interaction mode. Approximations to
axial displacement u and transverse displacement w (& =x/h and h =L ) are

X
U=Thx2 = U =T Hx2

T T

(3-25)E)? ! 6x_6x" 6 12x
= Lok 2 dw_| 2P| Jur dw |1 | [ur
w = - = N _ |
L)1) Oz2 de 13y x| 922 ar | 6x 2 [ |6z
Lot ?_22 I L

In the first step Ow=0. When the approximation to uis substituted there, virtual work density
simplifies to
dou .  du _Ouyy pqlx2

X
SWQZSWQ:_EEAE—FEL{]‘X: 7 _SqungA =

L EA L
oW = .[O SWQdX = —51/{)(2(71/{)(2 +EpgA) .

Principle of virtual work and the fundamental lemma of variation calculus imply that (notice that

the actual axial force is linear)

L pg .. . du FEA L
Uyr =——= giving as the axial force N=FEA—=—uy,=——pgA4.
X2 >k gving L X2 2Pg

In the second step ou = 0. When the approximation to w is substituted there, the virtual work den-

sity becomes (virtual work expression is available also in the formulae collection)



d*sw d*w _ dowdw

Owg =— EI -N —
= dx? = dx dx
T 2 21T
6 Rxp 6 12x)° 6x 6x7) 6x Ox7
2 3 2 3 2 3 2 3
5WQ=—{5”Y2} o D o U D S PV U o/ ){uyz}:
0z2) | 8x 21 & 2 Ha? a3 x| Oz
L2 L L2 L L2 L L2 L
T
L Su 12 6L 36 -3L7 (u
5w = 5dex=—{ ”} H s [ 2){ Yz}-
0 607) L’|-6L 47| 30L| 3L 417 | |02

Principle of virtual work and the fundamental lemma of variation calculus imply (with

N=-Lpgd/2)
EI[ 12 —6L] peal 36 3L ){“”}:o
6L 41| 60 | 3L 41| |0p

In stability analysis, the goal is to find the value of the loading parameter such that the solution is
not unique. This is possibly only if

EI 12 6L _ pgd 36 —3L)_0 N 13 EI —(L) o
6L 4| 60 |-3L 4 g 80 ¥

giving (the smallest p matters)

p=Su3+23nLEL o (13 231 120 _EI
3 Agl? Agl? 13+ 2431 dgl3




The plane frame of the figure consists of a rigid body 3 and D :
beam elements 1 and 2. The joints at nodes 2 and 3 are fric- L
tionless. Determine the critical value of the force F acting @ @
on the rigid body at distance alL a €[0,1] from node 3
making the frame to buckle laterally. The cross-section
properties 4 and / and Young’s modulus of the material

E are constants.

Solution
The non-zero displacement and rotation components are 1z, = y3, Oy, =0y3, uy,, and uy3. The
vertical contact forces between the beams at nodes 2 and 3 follow from the equilibrium equations of
the rigid body 3. Therefore, the axial force in beam 1 is N =-aF and that in beam 2
N =—(1-a)F (both compression) and it is enough to consider only the bending of beams 1 and 2.

For beam 1, the non-zero displacement/rotation components are (omitting the axial one as only the

bending mode is considered) u.; =uz, and 60, =0y,

o |7 [12 -6L -12 -6L]( g

spimt__) O | E1|-6L 4 6L 202 || 0 | [Sug|' EI[12 6L [uy,
Suzy | [P|-12 6L 12 6L ||uy, S0y, | Bler ar?||6y,]’
ya)  |-eL 21> 6L 41* |02
0" 36 3L -36 -3L](

spoa__) O | N [-3L ar? 3L -7 || 0 | _[Suzy) aF [36 3L 7[uy
5”22 30L|-36 3L 36 3L Ugzo 50)/2 30L (3L 4L2 HYZ
60y 3L -[* 3L 417 |02

therefore

86y, ) 1| 6L 41*| 30L|3L 4% (6y2)
For beam 2, the non-zero displacement/rotation components are (again omitting the axial one as on-
ly the bending mode is considered) u_3 =uzy =uz3 and 0,3 = Oy3 = by,
o 1T [12 -6L -12 —6L]|( o

0 | Er|-6L 42 6L 212 || 0 |  (Suzy|" Ef[12 6L ](uy,
Sugy | Bl-12 6L 12 6L ||ug | |86y, | IBler 412 :

% |—6L 21> 6L 41 |02

Oy




0o 17 36 -3L -36 -3L|( o

spa__| O [ N | 3L 4’ 3L 21} 0 | [Suy Ta-a)F[36 3L
51/122 30L —36 3L 36 3L I/lzz 59}/2 30L
00y 3L —I? 3L 41* |62

therefore

sw? - _{&,22} (EI 12 6L _(-a)F 36 3L ){“22}
S6yr | “rPeL 4r?| 30L |31 4?| 6yy)
Virtual work expression of the structure is the sum of element contributions i.e
T

) 12 6L 36 3L

5W:5W1+5W2:—{ ”22} PR - , ){”22}.
60y Pler 4r*| 30L|3L 412 |6y,

A non-trivial solution is possible only if the matrix inside parenthesis is singular

12 6L Fr? (36 3L FLZ
det - -0 = —=2(13+2/31
({611 4L } 60E] { }) ( 31)-

3 417

Critical value is the smallest of the solutions

E18(13 2J31) = 497 €

3L 412

f

Uzo
Oy2

}



Determine the critical value of force F' causing some

beam of the truss shown to buckle. First, use the bar

model to solve for the nodal displacements and there-
by the axial forces as functions of the loading F' (as-
sumed to be positive). After that, use criterion
N(F)= 72EI / h? to find the first beam to buckle and
the critical value F_.. Cross-sectional areas of beams
2 and 3 are v/84 and that of beam 1 24 . The second

moments of cross-sections / and the Young’s modulus

E of the material are constants.

Solution
In the first step, the structure is considered as bar structure to find the nodal displacements as func-

tions of the loading. Virtual work expression of the bar element needed in the displacement analysis

T T
5Wint __ 6”)61 % L =T uy and 5Wext _ 6ux1 M 1
61/lx2 h|-1 1 Uy 51’[)(2 2 1
depend on the cross-sectional area 4, Young’s modulus £, bar length %, force per unit length of
the bar f, in the direction of the x —axis. The non-zero displacement/rotation components of the

structure are uy,, uys3, and uy3. Virtual work expression of the elements are (no distributed forc-
es)

Barl: u, =0, u,=uy,,

T

ou 1 0 O|fu
1 0 V" g4l 1 -1][ O 21 B4 *
oW =-— _ =— 5UX3 —10 0 O Uxs (s
5MX2 2L | -1 1 Uxo L
51,[23 0 0 0 le3
1
Bar2: u,=0, ux3=$(ux3+uz3)
T
ou 0 0 Offu
, 0 "ESs4a[1 -1][ 0 Nz -
SW?=— = — 51,[X3 —|0 1 1 Uxs
5MX3+51/123 \/gL -1 1 Uyzt+uzs L
51/123 0 1 1 Uzs
1 1
Bar 3: ux3=$(ux3—uz3), Uyo =$“X2
. Suyy )| 1 =1 17 [uy,
3 Suy3—Suyy| EBA[ 1 —1|[uy;—uys L4
SW3 =— N =— 51,[X3 — -1 1 -1 Uxs
5”){2 \/gL -1 1 Uy L

51/123 1 -1 1 le3



Ouxr 0
Force 4: sW* =— Ouys 0
Ouzs F
Ouxr T (F
Force 5: SW°> =— Ouys 0
Ouzs 0

Virtual work expression of a structure is sum of the element contributions

T

5”){2 EA 2 -1 1 Uxo F
oW =— 5“){3 (T -1 2 0 Uys T 0 )
51123 1 0 2 LlZ3 F

Principle of virtual work and the fundamental lemma of variation calculus imply the linear equation

system and thereby the solution to nodal displacements

2 -1 1||u 1 u -1/2
EA X2 X2 FL

-1 2 0 Uy +F{0:=0 = Uy Za -1/4+}.

10 2||uy, 1 s 1/4

The axial forces of the beams become (notice that the expression depends on the displacement
components in the material coordinate systems of the beams)
EA 1 FL

Beaml: N=—uy, = el W 2
7 2= ( 2EA)

B84 1 Yoo
\/—\/—UX3L‘Z3_\/—

EJ84 1 ]

Beam 3: N—— u Uy +U =——F.
T \/—(XZ x3tuz3) N

Beam2: N =

The critical loading of the truss as predicted by criterion N = #2EI/ h* in which N is the magni-

tude of the compressive axial force

Beam 1: F—1 zﬂ~493 ,
2 7? I?

Beam 2: F—L zﬂ~698 7
V2 L

Beam 3: F=Lﬂ2£21z6.98E—£.
V2L L

The critical load of the truss is the smallest of the critical loads calculated for the beams



LB 0B e

F .
12 I?

Ccr

Beam 1 is likely to buckle first.



Determine the critical value of the in-plane loading
P Mmaking the plate shown to buckle. Use
w(x, y) =agpsin(zx/ L)sin(zry/L) as the approxima-
tion and assume that N, =-p, N, =0, and

Ny, = 0. Problem parameters E, v, p and ¢ are con-

stants. Integrals of sin and cos satisfy, e.g.,

L . . x, . . X L L
.[0 s1n(z7rz)s1n(]7rz)dx —35 and .[ cos(m—) cos(]n—)dx 5 5,J.
Solution
Assuming that the material coordinate system is chosen so that the plate bending and thin slab
modes decouple in the linear analysis and that the in-plane stress resultants are known (from linear

displacement analysis, say), it is enough to consider the virtual work densities of plate bending
mode and the coupling of the bending and thin-slab modes

T
o*sw/ ox’ 8w/ ox* .
it =) 025w/ o r (£ ) oy L s odw/ax] | Nxe Ny |[ow/ox
12" ° Rt osw/ay| |N, N, ||éw/dy
2025w/ oxdy 20%w/ oxdy
where the elasticity matrix of plane stress
I v 0
[El, £ sV 1 0
Vo o0 (1-v)/2
Approximation to the transverse displacement and its derivatives are
X .Y
, V) =apsin(zr —)sin(r =) =
w(x, y) = aq (ﬂL) (ﬂL)
a—W—a (E)COS(ﬂﬁ)Sin(ﬂZ) a—W=a (E)Sin(ﬂﬁ)COS(ﬂl)
ox L L L VL L L
2 2 2
6_21:6_2 —ao( ) sin(7r — )51n(7r ) 8—W:ao(z)zcos(ﬂi)cos(ﬂz).

When the approximation is substituted there, virtual work densities of the internal and forces and
that of the coupling simplify to (N, =—p and N, =N, =0)
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Virtual work expressions are integrals of the densities over the domain occupied by the
plate/element
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Virtual work expression
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Principle of virtual work W =0 Vda, and the fundamental lemma of variation calculus give
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For a non-trivial solution a; # 0, the loading parameter needs to take the value
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