\qquad

Home assignment 3

A thin triangular slab of thickness t is loaded by its own weight. Derive the virtual work expression δW of the structure and solve for the nodal displacements $u_{X 3}$ and $u_{Y 3}$. Approximation is linear and elasticity parameters E, v and density ρ are constants. Assume plane stress conditions.

Solution

The virtual work densities (virtual works per unit area) of the thin slab model under the plane stress conditions
$\delta w_{\Omega}^{\mathrm{int}}=-\left\{\begin{array}{c}\partial \delta u / \partial x \\ \partial \delta v / \partial y \\ \partial \delta u / \partial y+\partial \delta v / \partial x\end{array}\right\}^{\mathrm{T}} t[E]_{\sigma}\left\{\begin{array}{c}\partial u / \partial x \\ \partial v / \partial y \\ \partial u / \partial y+\partial v / \partial x\end{array}\right\}$ and $\delta w_{\Omega}^{\mathrm{ext}}=\left\{\begin{array}{l}\delta u \\ \delta v\end{array}\right\}^{\mathrm{T}}\left\{\begin{array}{c}f_{x} \\ f_{y}\end{array}\right\}$ where
$[E]_{\sigma}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & (1-v) / 2\end{array}\right]$
take into account the internal forces (stress), external forces acting on the element domain, and external forces acting on the edges. Notice that the components f_{x} and f_{y} are external forces per unit area.

Expressions of linear shape functions in material $x y$-coordinates can be deduced from the figure. Only the shape function $N_{3}=x / L$ of node 3 is actually needed. Hence

$$
\begin{aligned}
& u=\frac{x}{L} u_{X 3} \quad \Rightarrow \quad \frac{\partial u}{\partial x}=\frac{1}{L} u_{X 3} \quad \text { and } \frac{\partial u}{\partial y}=0, \\
& v=\frac{x}{L} u_{Y 3} \quad \Rightarrow \quad \frac{\partial v}{\partial x}=\frac{1}{L} u_{Y 3} \quad \text { and } \frac{\partial v}{\partial y}=0 .
\end{aligned}
$$

When the approximation is substituted there, virtual work expression of internal forces per unit area simplifies to
$\delta w_{\Omega}^{\mathrm{int}}=-\left\{\begin{array}{c}\delta u_{X 3} \\ 0 \\ \delta u_{Y 3}\end{array}\right\}^{\mathrm{T}} \frac{1}{L} \frac{t E}{2\left(1-v^{2}\right)}\left[\begin{array}{ccc}2 & 2 v & 0 \\ 2 v & 2 & 0 \\ 0 & 0 & 1-v\end{array}\right] \frac{1}{L}\left\{\begin{array}{c}u_{X 3} \\ 0 \\ u_{Y 3}\end{array}\right\} \Leftrightarrow$
$\delta w_{\Omega}^{\mathrm{int}}=-\left\{\begin{array}{l}\delta u_{X 3} \\ \delta u_{Y 3}\end{array}\right\}^{\mathrm{T}} \frac{t E}{2 L^{2}\left(1-v^{2}\right)}\left[\begin{array}{cc}2 & 0 \\ 0 & 1-v\end{array}\right]\left\{\begin{array}{c}u_{X 3} \\ u_{Y 3}\end{array}\right\}$.

As the integrand is constant, integration over the triangular domain gives
$\delta W^{\mathrm{int}}=\int_{A} \delta w_{\Omega}^{\mathrm{int}} \mathrm{d} A=\delta w_{\Omega}^{\mathrm{int}} \frac{L^{2}}{2}=-\left\{\begin{array}{l}\delta u_{X 3} \\ \delta u_{Y 3}\end{array}\right\}^{\mathrm{T}} \frac{t E}{4\left(1-v^{2}\right)}\left[\begin{array}{cc}2 & 0 \\ 0 & 1-v\end{array}\right]\left\{\begin{array}{l}u_{X 3} \\ u_{Y 3}\end{array}\right\}$.
In the virtual work density of the external forces $f_{x}=0$ and $f_{y}=-\rho g t$ so
$\delta w_{\Omega}^{\mathrm{ext}}=\left\{\begin{array}{l}\delta u \\ \delta v\end{array}\right\}^{\mathrm{T}}\left\{\begin{array}{l}f_{x} \\ f_{y}\end{array}\right\}=-\rho g t \frac{x}{L} \delta u_{Y 3}$.

Integration over the domain occupied by the element gives
$\delta W^{\mathrm{ext}}=\int_{A} \delta w_{\Omega}^{\mathrm{ext}} \mathrm{d} A=\int_{0}^{L}\left(\int_{0}^{L-x}-\rho g t \frac{x}{L} \delta u_{Y 3} d y\right) d x=-\frac{\rho g t L^{2}}{6} \delta u_{Y 3}=-\left\{\begin{array}{c}\delta u_{X 3} \\ \delta u_{Y 3}\end{array}\right\}^{\mathrm{T}} \frac{\rho g t L^{2}}{6}\left\{\begin{array}{l}0 \\ 1\end{array}\right\}$.
Virtual work expression of the structure takes the form
$\delta W=-\left\{\begin{array}{l}\delta u_{X 3} \\ \delta u_{Y 3}\end{array}\right\}^{\mathrm{T}}\left(\frac{t E}{4\left(1-v^{2}\right)}\left[\begin{array}{cc}2 & 0 \\ 0 & 1-v\end{array}\right]\left\{\begin{array}{l}u_{X 3} \\ u_{Y 3}\end{array}\right\}+\frac{\rho g t L^{2}}{6}\left\{\begin{array}{l}0 \\ 1\end{array}\right\}\right)$.
Principle of virtual work $\delta W=0 \forall \delta$ a and the fundamental lemma of variation calculus give
$\frac{t E}{4\left(1-v^{2}\right)}\left[\begin{array}{cc}2 & 0 \\ 0 & 1-v\end{array}\right]\left\{\begin{array}{l}u_{X 3} \\ u_{Y 3}\end{array}\right\}+\frac{\rho g t L^{2}}{6}\left\{\begin{array}{l}0 \\ 1\end{array}\right\}=0 \Leftrightarrow\left\{\begin{array}{l}u_{X 3} \\ u_{Y 3}\end{array}\right\}=-\frac{4}{6} \frac{\rho g L^{2}}{E}(1+v)\left\{\begin{array}{l}0 \\ 1\end{array}\right\}$.

