Exercise 10

Figure 1 DDH cylinder system

Inputs

$V_{p} \quad$ pump's swept volume $\left[m^{3} / r\right]$
$F \quad$ load force [N]
v piston velocity [m/s]
D piston diameter [m]
d piston rod diameter [m]
$R \quad$ laminar resistance of leakage throttles $\left[\mathrm{Pa} /\left(\mathrm{m}^{3} / \mathrm{s}\right)\right]$
Δ prack cracking (open) pressure difference of check valve [Pa]
$K \quad$ laminar resistance of check valves $\left[\mathrm{Pa} /\left(\mathrm{m}^{3} / \mathrm{s}\right)\right]$
paccu accumulator's pressure [gauge pressure - Pa]
$V_{p}:=21 \cdot 10^{-6} \cdot \mathrm{~m}^{3}$
$\mathrm{F}:=30000 \cdot \mathrm{~N} \quad$ load force is group dependent
$\mathrm{v}:=0.1 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$
D:=0.1•m
$\mathrm{d}:=0.060 \cdot \mathrm{~m}$
$A:=\frac{\pi}{4}\left(D^{2}-d^{2}\right)$

$$
\mathrm{A}=0.00503 \mathrm{~m}^{2}
$$

Pump

Figure 2 DDH pump system

$$
\begin{array}{l|l|l}
\mathrm{R}:=\frac{60000 \cdot 50 \cdot 10^{5}}{0.5} \cdot \frac{\mathrm{~Pa} \cdot \mathrm{~s}}{\mathrm{~m}^{3}} & & \text { (laminar) leakage flor resistance } \\
\mathrm{K}:=\frac{5 \cdot 10^{5}}{0.001} \cdot \frac{\mathrm{~Pa} \cdot \mathrm{~s}}{\mathrm{~m}^{3}} & \mathrm{R}=\left(6 \cdot 10^{11}\right) \frac{\mathrm{Pa} \cdot \mathrm{~s}}{\mathrm{~m}^{3}} & \Delta \mathrm{p}_{\mathrm{cv}}=\mathrm{p}_{\text {crack }}+\mathrm{K} \cdot \mathrm{q}_{\mathrm{vcc}}
\end{array}
$$

$\mathrm{q}_{\mathrm{v} . \mathrm{cv}}=\frac{\Delta \mathrm{p}_{\mathrm{cv}}-\mathrm{p}_{\text {crack }}}{\mathrm{K}}$
check valve's flow rate, if pressure difference is higher than cracking pressure, otherwise flow rate is 0

System equations

All the flow rate equations for valves must be formulated.
Accumulator pressure gives the pressure reference for the system and defines all of the absolute pressure levels in the system.

Check valve B flow (T->B)
$q_{v . c v B}=\frac{p_{T}-p_{B}-p_{\text {crack }}}{K}$

A chamber flow

$$
v \cdot A=q_{v p .0^{-}}-q_{v p . A B}-q_{v p . A T}
$$

B chamber flow
$v A$ represents (again) cylinder flow
$v \cdot A+q_{v . c v B}+q_{v p . A B}-q_{v p . B T}=q_{v p .0}$
$v \cdot A=q_{v p . O^{-}} q_{v . c v B}-q_{v p . A B}+q_{v p . B T}$
flow rate through check valve \mathbf{B} from tank (accumulator) to B chamber pipe, pressure difference over check valve is $\mathrm{p}_{\mathrm{T}}-\mathrm{p}_{\mathrm{B}}$
vA represents cylinder flow which is "ideal pump" flow - internal leakage - case drain to accumulator
"ideal pump" flow is flow from cylinder + check valve (TB) flow + internal leakage - case drain from B to accumulator
it is probable that $\mathrm{pB}<\mathrm{pT}$, so case drain will be negative in this case

Subtract cylinder flow equations

Now some of the flows (flow equations) are common for the A and B cylinder chamber equations. You can get rid of them by subtracting equations.
$0=-q_{v p . A T}-q_{v p . B T}+q_{v . c v B}$

The remaining flow rates are external drain (AT), external drain (BT) and check valve (TB).
$q_{v . c v B}=q_{v p . A T}+q_{v p . B T}$
These flow rates are all unknown so we have to utilize pressure information. We know accumulator pressure and pressure difference between cylinder chamber pressures A and B.

We substitute flow rates equations with the corresponding valve equations based on pressure information.

$$
\frac{p_{A C C U}-p_{B}-p_{\text {crack }}}{K}=\frac{p_{A}-p_{A C C U}}{R}+\frac{p_{B}-p_{A C C U}}{R}
$$

There are still too many unknown pressures (2) but we know the relation between cylinder chamber pressures.

$$
\begin{aligned}
& \left(p_{A}-p_{B}\right) \cdot A=F \\
& \frac{p_{A C C U}=\frac{F}{A}+p_{B}-p_{\text {crack }}}{K}=\frac{\frac{F}{A}+p_{B}-p_{A C C U}}{R}+\frac{p_{B}-p_{A C C U}}{R}
\end{aligned}
$$

Now we have only one unknown (pressure) and we can solve it and also all the other variables.

$$
\begin{gathered}
p_{B} \cdot\left(\frac{2}{R}+\frac{1}{K}\right)=\frac{p_{A C C U}-p_{\text {crack }}}{K}-\frac{F}{A \cdot R}+\frac{2 \cdot p_{A C C U}}{R} \\
p_{B}=\frac{\frac{p_{A C C U}-p_{\text {crack }}}{K}-\frac{F}{A \cdot R}+\frac{2 \cdot p_{A C C U}}{R}}{\frac{2}{R}+\frac{1}{K}}
\end{gathered}
$$

$$
p_{B}:=\frac{p_{A C C U} \cdot\left(\frac{1}{K}+\frac{2}{R}\right)-\frac{p_{\text {crack }}}{K}-\frac{F}{A \cdot R}}{\frac{2}{R}+\frac{1}{K}}
$$

$$
\begin{array}{ll|l|l}
\mathrm{p}_{\mathrm{A}}:=\frac{\mathrm{F}}{\mathrm{~A}}+\mathrm{p}_{\mathrm{B}} & & \mathrm{p}_{\mathrm{B}}=0.251 \mathrm{bar} \\
\mathrm{p}_{\mathrm{A}}=59.934 \mathrm{bar}
\end{array}
$$

$$
q_{v . c y \mid}:=v \cdot A
$$

$$
q_{v . c y l}=30.159 \frac{\mathrm{l}}{\mathrm{~min}}
$$

"I deal pump" flow rate from B side flow equation
$v \cdot A=q_{v p .0^{-}}-q_{v . c v B}-q_{v p . A B}+q_{v p . B T}$
$q_{v p .0}=v \cdot A+q_{v . c v B}+q_{v p . A B}-q_{v p . B T}$

$$
\begin{aligned}
q_{\mathrm{vp} .0}:=\mathrm{v} \cdot \mathrm{~A}+\frac{\mathrm{p}_{\mathrm{ACCU}}-\mathrm{p}_{\mathrm{B}}-\mathrm{p}_{\text {crack }}}{\mathrm{K}}+\frac{\Delta \mathrm{p}}{\mathrm{R}}-\frac{\mathrm{p}_{\mathrm{B}}-\mathrm{p}_{\mathrm{ACCU}}}{\mathrm{R}} \quad q_{\mathrm{vp} .0}=31.35 \frac{\mathrm{l}}{\min } \\
\mathrm{q}_{\mathrm{vp} .0}=\left(5.225 \cdot 10^{-4}\right) \frac{\mathrm{m}^{3}}{\mathrm{~s}}
\end{aligned}
$$

"I deal pump" flow rate from A side flow equation
$q_{v p .0 . A}:=v \cdot A+\frac{\Delta p}{R}+\frac{p_{A}-p_{A C C U}}{R}$

$$
q_{v p .0 . \mathrm{A}}=31.35 \frac{\mathrm{l}}{\mathrm{~min}}
$$

Pump's rotational speed
$\mathrm{n}:=\frac{\mathrm{q}_{\mathrm{vp} .0}}{\mathrm{~V}_{\mathrm{p}}}$

$$
\mathrm{n}=\left(1.493 \cdot 10^{3}\right) \frac{1}{\mathrm{~min}}
$$

$$
\mathrm{n}=24.881 \frac{1}{\mathrm{~s}}
$$

Pump's internal leakage
$q_{v p . A B}:=\frac{\Delta \mathrm{p}}{\mathrm{R}}$

$$
q_{v p . A B}=0.59683 \frac{\mathrm{~L}}{\min }
$$

$$
\mathrm{q}_{\mathrm{vp} . A B}=\left(9.947 \cdot 10^{-6}\right) \frac{\mathrm{m}^{3}}{\mathrm{~s}}
$$

Pump's case drain from A to tank (accumulator)

$$
\begin{aligned}
& q_{\text {vp } . A T}:=\frac{p_{A}-p_{A C C U}}{R} \\
& q_{\text {vp } . A T}=0.59434 \frac{L}{\min }
\end{aligned}
$$

$$
\mathrm{q}_{\mathrm{vp} . \mathrm{AT}}=\left(9.906 \cdot 10^{-6}\right) \frac{\mathrm{m}^{3}}{\mathrm{~s}}
$$

$$
\begin{aligned}
q_{v p . B T}:= & \frac{p_{B}-p_{A C C U}}{R} \\
& q_{v p . B T}=-0.00249 \frac{\mathrm{~L}}{\min } \\
& q_{v p . B T}=-4.155 \cdot 10^{-8} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
\end{aligned}
$$

Note: leakage flow rate is from accumulator to B side (negative sign)
Check valve (TB) flow rate

$$
\begin{aligned}
q_{\mathrm{V} . \mathrm{cvB}} & :=\frac{p_{\mathrm{ACCU}}-p_{\mathrm{B}}-p_{\text {crack }}}{K} \\
\mathrm{q}_{\mathrm{v.cvB}}=0.59184 \frac{\mathrm{~L}}{\min } & \mathrm{q}_{\mathrm{v} . \mathrm{cvB}}=\left(9.864 \cdot 10^{-6}\right) \frac{\mathrm{m}^{3}}{\mathrm{~s}}
\end{aligned}
$$

Pump-motor torque

$$
\mathrm{T}:=\frac{\Delta \mathrm{p} \cdot \mathrm{~V}_{\mathrm{p}}}{2 \cdot \pi}
$$

$$
\mathrm{T}=19.948 \mathrm{~N} \cdot \mathrm{~m}
$$

$$
P_{\text {out }}:=F \cdot v
$$

$$
P_{\text {out }}=3 \mathrm{~kW}
$$

$$
\mathrm{P}_{\mathrm{in}}:=\mathrm{T} \cdot 2 \cdot \pi \cdot \mathrm{n}
$$

$$
P_{\text {in }}=3.118 \mathrm{~kW}
$$

Power losses

AB
$\mathrm{P}_{\mathrm{AB}}:=\mathrm{qup.AB} \cdot\left(\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{B}}\right)$

$$
P_{A B}=59.368 \mathrm{~W}
$$

BT
$P_{B T}:=q_{v p . B T} \cdot\left(p_{B}-p_{A C C U}\right)$

$$
\mathrm{P}_{\mathrm{BT}}=0.001 \mathrm{~W}
$$

AT

$$
P_{A T}:=q_{v p . A T} \cdot\left(p_{A}-p_{A C C U}\right)
$$

$$
\mathrm{P}_{\mathrm{AT}}=58.873 \mathrm{~W}
$$

Check Valve

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{CV}}:=\mathrm{q}_{\mathrm{V} . \mathrm{CvB}} \cdot\left(\mathrm{p}_{\mathrm{ACCU}}-\mathrm{p}_{\mathrm{B}}\right) \quad \mathrm{P}_{\mathrm{CV}}=0.246 \mathrm{~W} \\
& \mathrm{P}_{\mathrm{AB}}+\mathrm{P}_{\mathrm{BT}}+\mathrm{P}_{\mathrm{AT}}+\mathrm{P}_{\mathrm{CV}}=118.488 \mathrm{~W} \\
& \mathrm{P}_{\text {in }}-\mathrm{P}_{\text {out }}=118.488 \mathrm{~W}
\end{aligned}
$$

Proportional Control Valve operated system

$q_{\text {v.nom }}:=\frac{40}{60000} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
$\Delta \mathrm{p}_{\text {nom }}:=35 \cdot 10^{5} \cdot \mathrm{~Pa}$
Pressure differerence in (symmetric) cylinder

$$
\Delta \mathrm{p}:=\frac{\mathrm{F}}{\mathrm{~A}}
$$

$$
\Delta \mathrm{p}=59.683 \mathrm{bar}
$$

$$
\begin{array}{rl|l}
q_{v p . A B}:=\frac{p_{A}-p_{T}}{R} & q_{v p . A B}=\left(9.989 \cdot 10^{-6}\right) \frac{\mathrm{m}^{3}}{\mathrm{~s}} \\
q_{v p . A T}:=\frac{p_{A}-p_{T}}{R} & q_{v p . A T}=\left(9.989 \cdot 10^{-6}\right) \frac{\mathrm{m}^{3}}{\mathrm{~s}} \\
q_{v p . B T}:=\frac{p_{T}-p_{T}}{R} & q_{v p . B T}=0 \frac{m^{3}}{\mathrm{~s}}
\end{array}
$$

Cylinder flow rate(s)
$\mathrm{q}_{\mathrm{A} \text {.propo }}:=\mathrm{v} \cdot \mathrm{A}$
$q_{B . \text { propo }}:=v \cdot A$
Pressure losses in proportional control valve's control edges
$\Delta p_{\text {propo }}:=\frac{\mathrm{q}_{\mathrm{B} \text {. propo }}{ }^{2}}{\mathrm{~K}_{\text {valve }}{ }^{2}} \cdot \frac{10^{2} \cdot \mathrm{~V}^{2}}{\mathrm{U}^{2}}$
$\Delta \mathrm{p}_{\text {propo }}=19.897$ bar
Cylinder's B chamber pressure is the pressure loss in control edge BT (assuming tak pressure 0)
$\mathrm{p}_{\text {B.propo }}:=\Delta \mathrm{p}_{\text {propo }}$

$$
\mathrm{p}_{\mathrm{B} . \mathrm{propo}}=19.897 \mathrm{bar}
$$

Cylinder's A chamber pressure
$p_{\text {A.propo }}:=\frac{F+p_{B . \text { propo }} \cdot A}{A}$

$$
\mathrm{p}_{\mathrm{A} . \text { propo }}=79.58 \text { bar }
$$

PUMP pressure
$\mathrm{p}_{\text {p.propo }}:=\mathrm{p}_{\mathrm{A} . \text { propo }}+\Delta \mathrm{p}_{\text {propo }}$

$$
p_{\text {p.propo }}=99.477 \text { bar }
$$

Orifice AT
$\mathrm{q}_{\mathrm{v} . \mathrm{AT} . \text { propo }}:=\frac{\mathrm{p}_{\text {p.propo }}-\mathrm{p}_{\mathrm{T}}}{\mathrm{R}}$

$$
\mathrm{q}_{\mathrm{v} . \mathrm{AT} . \text { propo }}=0.995 \frac{\mathrm{l}}{\min }
$$

$$
\mathrm{q}_{\mathrm{V}, \mathrm{AT} \cdot \text { propo }}=\left(1.658 \cdot 10^{-5}\right) \frac{\mathrm{m}^{3}}{\mathrm{~s}}
$$

Orifice AB
$q_{\text {v.AB.propo }}:=\frac{\mathrm{p}_{\text {p.propo }}-\mathrm{p}_{\mathrm{T}}}{\mathrm{R}}$

$$
\mathrm{q}_{\mathrm{v} . \mathrm{AB} . \text { propo }}=0.995 \frac{\mathrm{l}}{\mathrm{~min}}
$$

$$
\mathrm{q}_{\mathrm{v}, \mathrm{AB} \cdot \mathrm{propo} o}=\left(1.658 \cdot 10^{-5}\right) \frac{\mathrm{m}^{3}}{\mathrm{~s}}
$$

$q_{\mathrm{v}, \mathrm{BT} . \text { propo }}:=\frac{\mathrm{p}_{\mathrm{T}}-\mathrm{p}_{\mathrm{T}}}{\mathrm{R}}$

$$
\mathrm{q}_{\mathrm{v} \cdot \mathrm{BT} . \text { propo }}=0 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

"Ideal pump" flow rate is divided into cylinder flow rate and leakage flow rates (case drain and internal leakage)
$\mathrm{q}_{\mathrm{vo} \text {.propo }}:=\mathrm{v} \cdot \mathrm{A}+\mathrm{q}_{\mathrm{v} \cdot \mathrm{AT} \text {.propo }}+\mathrm{q}_{\mathrm{v} . \mathrm{AB} \text {. propo }}$

$$
\mathrm{qvo}_{\mathrm{propo}}=32.149 \frac{\mathrm{l}}{\mathrm{~min}}
$$

Volumetric efficiency

$$
\eta_{\mathrm{v}}:=\frac{\mathrm{v} \cdot \mathrm{~A}}{\mathrm{~V} \cdot \mathrm{~A}+\mathrm{q}_{\mathrm{V} . \mathrm{AT} . \text { propo }}+\mathrm{q}_{\mathrm{v} . \mathrm{AB} . \text { propo }}}
$$

$$
\begin{aligned}
& q_{\mathrm{vo} 0 . \mathrm{propo}}=\left(5.358 \cdot 10^{-4}\right) \frac{\mathrm{m}^{3}}{\mathrm{~s}} \\
& \eta_{\mathrm{v}}=0.938
\end{aligned}
$$

Pump's rotational speed depends on "ideal pump" flow rate

$$
\mathrm{n}_{\text {p.propo }}:=\frac{\mathrm{q}_{\mathrm{vo} 0 . \text { propo }}}{\mathrm{V}_{\mathrm{p}}}
$$

$$
\begin{aligned}
& \mathrm{n}_{\text {p.propo }}=25.515 \frac{1}{\mathrm{~s}} \\
& \mathrm{n}_{\text {p.propo }}=\left(1.531 \cdot 10^{3}\right) \frac{1}{\mathrm{~min}}
\end{aligned}
$$

or, by using net flow rate (actuator flow rate) AND volumetric efficiency. this is the "normal way".
$\mathrm{n}_{\text {pump }}:=\frac{\mathrm{v} \cdot \mathrm{A}}{\eta_{\mathrm{v}} \cdot \mathrm{V}_{\mathrm{p}}}$

$$
\mathrm{n}_{\text {pump }}=25.515 \frac{1}{\mathrm{~s}}
$$

Pump's torque (hydromechanical efficiency is 1 , no friction)
$\mathrm{T}_{\text {p.propo }:}=\frac{\mathrm{p}_{\mathrm{p} . \mathrm{propo}} \cdot \mathrm{V}_{\mathrm{p}}}{2 \cdot \pi}$

$$
T_{\text {p.propo }}=33.248 \mathrm{~J}
$$

Pump's input power (with hydraulic variables)
$P_{\text {in.propo }}:=q_{v o . p r o p o} \cdot p_{\text {p.propo }}$

$$
P_{\text {in.propo }}=5.33 \mathrm{~kW}
$$

Pump's input power (with mechanical variables)
$\mathrm{P}_{\text {in.mech }}:=2 \cdot \pi \cdot \mathrm{n}_{\text {pump }} \cdot \mathrm{T}_{\text {p.propo }}$

$$
P_{\text {in.mech }}=5.33 \mathrm{~kW}
$$

Actuator's (cylinder) output power
$P_{\text {out.propo }}:=F \cdot v$

$$
\mathrm{P}_{\text {out.propo }}=3 \mathrm{~kW}
$$

Power loss in control edge PA
$\mathrm{P}_{\mathrm{PA}}:=\Delta \mathrm{p}_{\text {propo }} \cdot \mathrm{V} \cdot \mathrm{A}$

$$
P_{P A}=1.00014 \mathrm{~kW}
$$

Power loss in control edge BT (symmetric cylinder)
$\mathrm{P}_{\mathrm{BT}}:=\Delta \mathrm{p}_{\text {propo }} \cdot \mathrm{V} \cdot \mathrm{A}$

$$
P_{B T}=1.00014 \mathrm{~kW}
$$

Power loss in pump's orifice AB (internal leakage)
$\mathrm{P}_{\text {ORI.AB }}:=\mathrm{q}_{\mathrm{v} . \mathrm{AB} . \text { propo }} \cdot \mathrm{p}_{\mathrm{p} . \text { propo }}$

$$
\mathrm{P}_{\mathrm{ORI} . \mathrm{AB}}=164.929 \mathrm{~W}
$$

Power loss in pump's orifice AT (case drain)
$P_{\text {ORI.AT }}:=q_{\text {v.AT. propo }} \cdot p_{\text {p. propo }}$

$$
\mathrm{P}_{\mathrm{ORI.AT}}=164.929 \mathrm{~W}
$$

Power loss in pump's orifice BT (case drain)
$\mathrm{P}_{\text {ORI.BT }}:=\mathrm{q}_{\mathrm{V} . \mathrm{BT} . \text { propo }} \cdot \mathrm{p}_{\text {p.propo }}$

$$
\mathrm{P}_{\mathrm{ORI} . \mathrm{BT}}=0 \mathrm{~W}
$$

Power usage together
$\mathrm{P}_{\text {out.propo }}+\mathrm{P}_{\mathrm{PA}}+\mathrm{P}_{\mathrm{BT}}+\mathrm{P}_{\text {ORI.AB }}+\mathrm{P}_{\text {ORI.AT }}+\mathrm{P}_{\text {ORI.BT }}=5.33 \mathrm{~kW}$
Pump's input power (for comparison)

$$
P_{\text {in.propo }}=5.33 \mathrm{~kW}
$$

Created with PTC Mathcad Express. See www.mathcad.com for more information.

System's mechanical efficiency
$\frac{P_{\text {out.propo }}}{P_{\text {in. propo }}}=0.563$
The major power losses take place in proportional control valve's orifices (control edges). Typically there is also some leakage in orifices PB and AT.

