Lecture 6: The Cook–Levin Theorem

Aalto University
School of Science
Department of Computer Science

Spring 2019
Agenda

- Boolean satisfiability
- CNF formulas and Boolean functions
- The Cook–Levin theorem
NP-complete Problems

- **Last lecture:**
 - We saw that TMSAT is NP-complete
 - Definition tied directly to the definition of NP
 - Does not really tell us anything new about NP

- **This lecture:**
 - Prove that a problem called \textit{CNF-SAT} is NP-complete
 - First example of a \textit{natural} NP-complete problem
 - Starting point for further NP-completeness proofs
Cook–Levin Theorem

- One of the founding results of computational complexity
 - CNF-SAT is NP-complete
 - Named after Stephen Cook and Leonid Levin
 - Both independently proved the theorem around 1971

Stephen Cook

Leonid Levin
Boolean Formulas

- Boolean formula is built from the following primitives:
 - Variables x_1, x_2, \ldots, x_n
 - Operators AND (\land), OR (\lor), and NOT (\neg)
 - Example: $\varphi = (x_1 \land x_2) \lor (x_2 \land x_3) \lor (x_3 \land x_1)$

Definition (Boolean formulas, recursive definition)

The set of *Boolean formulas* over variables x_1, x_2, \ldots, x_k is defined as follows:

- x_i is a Boolean formula for any $i = 1, 2, \ldots, n$.
- If φ is Boolean formula, then $\neg \varphi$ is Boolean formula.
- If φ and ψ are Boolean formulas, then $\varphi \land \psi$ and $\varphi \lor \psi$ are Boolean formulas.
Value of a Boolean Formula

- An assignment gives value 1 (true) or 0 (false) to each variable
 - Semantics of NOT, AND and OR are defined in the obvious way

Definition (Value of a Boolean formula)

Let $z = (z_1, z_2, \ldots, z_n) \in \{0, 1\}^n$ be an assignment. The value $\varphi(z)$ of formula φ under assignment z is defined as follows:

- If $\varphi = x_i$, when $\varphi(z) = z_i$.
- If $\varphi = \neg \psi$, then $\varphi(z) = 1 - \psi(z)$.
- If $\varphi = \psi_1 \land \psi_2$, then $\varphi(z) = 1$ if $\psi_1(z) = \psi_2(z) = 1$, and $\varphi(z) = 0$ otherwise.
- If $\varphi = \psi_1 \lor \psi_2$, then $\varphi(z) = 1$ if $\psi_1(z) = 1$ or $\psi_2(z) = 1$, and $\varphi(z) = 0$ otherwise.
Value of a Boolean Formula

- **Assignment** z *satisfies* formula φ if $\varphi(z) = 1$
 - A formula is *satisfiable* if there is a satisfying assignment
 - A formula is *unsatisfiable* otherwise

- **Examples:**
 - $\varphi = (x_1 \land x_2) \lor (x_2 \land x_3) \lor (x_3 \land x_1)$
 - φ is satisfiable
 - $\psi = (x_1 \lor \neg x_2) \land \neg x_1 \land x_2$
 - ψ is unsatisfiable
Conjunctive Normal Form

- A formula in **conjunctive normal form** is a formula that is an AND of ORs:
 - Example: \((x_1 \lor x_2) \land (x_2 \lor \neg x_3) \land (x_3 \lor \neg x_1)\)

- Formally:
 - A CNF formula is a formula of form

 \[
 \bigwedge_{i=1}^{m} \left(\bigvee_{j=1}^{k} \ell_{i,j} \right),
 \]

 where each \(\ell_{i,j}\) is either an \(x\) or \(\neg x\) for some variable \(x\)
 - Terms \(\ell_{i,j}\) are called **literals**
 - Terms \(\bigvee_{j=1}^{k} \ell_{i,j}\) are called **clauses**
CNF-SAT and \(k \)-SAT

Definition (CNF-SAT)
- **Instance:** A CNF formula \(\phi \).
- **Question:** Is \(\phi \) satisfiable?

Definition (\(k \)-SAT)
- **Instance:** A CNF formula \(\phi \) such that each clause in \(\phi \) has at most \(k \) literals.
- **Question:** Is \(\phi \) satisfiable?

- **2-SAT instance:** \((x_1 \lor x_2) \land (x_2 \lor \lnot x_3) \land (x_3 \lor \lnot x_1)\)
- **3-SAT instance:** \((x_1 \lor x_2 \lor x_3) \land (x_2 \lor \lnot x_3 \lor x_4)\)
- **4-SAT instance:** \((x_1 \lor x_2 \lor x_3 \lor \lnot x_4) \land (x_2 \lor \lnot x_3 \lor x_4)\)
Theorem

CNF-SAT is in NP.

Proof: CNF-SAT has a polynomial-time verifier

- **Input:** a formula φ over variables x_1, x_2, \ldots, x_n
- **Certificate:** an assignment $z \in \{0, 1\}^n$
- **Verification algorithm:** compute the value $\varphi(z)$, accept if $\varphi(z) = 1$

Corollary

For any fixed $k \geq 1$, k-SAT is in NP.
Universality of CNF Formulas

- CNF formulas can express all Boolean functions
 - May require exponential number of clauses
 - This does not matter: we want to use this construction for \textit{constant} number of variables

Lemma

Let $f : \{0, 1\}^n \rightarrow \{0, 1\}$ be a Boolean function. Then there is a CNF formula φ over n variables with at most 2^n clauses such that $\varphi(z) = f(z)$ for all $z \in \{0, 1\}^n$.
Universality of CNF Formulas: Proof

- For each \(z \in \{0, 1\}^n \), we construct clause \(C_z \):
 - Let \(\ell_i = x_i \) if \(z_i = 0 \), and \(\ell_i = \neg x_i \) if \(z_i = 1 \)
 - Let \(C_z = \bigvee_{i=1}^n \ell_i \)
 - We now have \(C_z(y) = 0 \) if \(z = y \), and \(C_z(y) = 1 \) if \(z \neq y \)

- For any \(f : \{0, 1\}^n \rightarrow \{0, 1\} \), we construct formula \(\varphi \):
 - Let \(\varphi_f = \bigwedge_{z: f(z) = 0} C_z \)
 - If \(f(y) = 0 \), then \(y \) does not satisfy the clause \(C_y \) in \(\varphi_f \)
 - If \(f(y) = 1 \), then \(y \) satisfies all clauses \(C_y \) in \(\varphi_f \)
 - Thus, we have \(\varphi_f(y) = f(y) \) for all \(y \in \{0, 1\}^n \)
Cook–Levin Theorem

Theorem

CNF-SAT is NP-complete.

- **We have:** CNF-SAT is in NP
- **Next:** CNF-SAT is NP-hard
Cook–Levin Theorem: Proof

- **General template for the proof:**
 - Let $L \in \text{NP}$ be a language
 - We prove that there is a polynomial-time reduction from L to CNF-SAT

- **The only thing we know about L is that it is in NP**
 - There exists a verifier M for L
 - For any $x \in L$, there is a certificate for x of length at most $q(|x|)$, for some polynomial q
 - M runs on input (x, u) in time $p(|x|)$ for some polynomial p with $q(n) \leq p(n)$
 - M uses at most $p(|x|)$ positions on each tape
 - We may assume M has one working tape, uses alphabet $\{\triangleright, \Box, 0, 1\}$
Execution Tables

- **Execution of** M **on input** (x, u) **can be viewed as a table:**
 - Row i describes the state of M, the positions of heads and the contents of the tapes after step i
 - Since M runs in time $p(|x|)$, each row needs to store at most $1 + 3 \cdot 2 \cdot p(|x|)$ entries
 - three tapes, one (head,symbol)-pair per position on a tape
 - The number of rows is at most $p(|x|)$, and wlog we may assume exactly $p(|x|)$ (no moves after M enters halting state)

- **Table can be encoded as binary:**
 - $|Q|$ bits for state
 - 3 bits per each tape position on each of 3 tapes
 - 1 bit for head marker (location indicator)
 - 2 bits for current symbol encoding
Execution Tables

- **Execution table is accepting if:**
 - State entry on the last row corresponds to the halting state
 - The encoding of the output tape on the last row corresponds to ▶1□□□... ▶

- **By definition:**
 - M has accepting execution table if and only if M accepts
Proof overview:

- Let x be an instance of L.
- We construct a CNF-SAT formula φ_x over $S = p(|x|) \cdot (|Q| + 9p(|x|))$ variables.
- Assignment z to φ_x encodes an execution table of M.
- Formula φ_x is construed so that a given assignment z satisfies φ_x if and only if:

 (i) z encodes a valid execution table.
 (ii) z encodes an execution table on input (x, u) for some $u \in \{0, 1\}^*$.
 (iii) z encodes an accepting execution table.
Cook–Levin Theorem: Proof

- Clauses of φ_x are constructed to \textit{locally} enforce the constraints
 - We could use the universality lemma to directly construct a CNF formula to enforce that the variables encode an accepting execution table
 - This would give \textit{exponential} size in terms of $|x|$
 - Need to be more careful to get polynomial size

- Basic idea: encode \textit{local} constraints
Cook–Levin Theorem: Proof

- **Clauses of φ_x that enforce the starting and halting conditions:**
 - Contents of the input tape on the first row of the execution table is $\triangleright x \square \square \ldots$ and of the other tapes $\triangleright \square \square \ldots$
 - All heads start at position 1 and the first state is q_0
 - State on the last row of the execution table is q_h
 - Contents of the output tape on the last row of the execution table is $\triangleright 1 \square \square \ldots$

- These can be encoded by a conjunction of $O(p(|x|))$ single-literal clauses
Cook–Levin Theorem: Proof

- **Clauses of φ_x that enforce consistency of the table:**
 - Only single head position and state for each row
 - If head is not at position j, then the tape symbols at position j do not change between steps
 - If head is at position j, then the tape symbols and the head markers around position j change correctly between steps
 - The machine state changes correctly between steps

- **Each of these conditions can be viewed as a Boolean function on a constant number of variables**
 - At most $c = 2|Q| + 3 \cdot 2 \cdot 6$ variables per constraint
 - Encode as a CNF with 2^c clauses using universality lemma
 - About $O\left(p(|x|)^2\right)$ constraints needed
Cook–Levin Theorem: Proof

The final CNF formula φ_x is conjunction of all constraints:
- A conjunction of CNF formulas is a CNF formula

By construction, this gives us a reduction from L to CNF-SAT
- $x \in L$ if and only if φ_x is satisfiable
- φ_x can be constructed in polynomial time
CNF-SAT: Discussion

- **CNF-SAT is a relevant problem in practice**
 - *Problem-specific* reductions to CNF-SAT can be much more compact than the general reduction given by Cook–Levin theorem
 - E.g. Intel has used CNF-SAT solvers to verify and optimise processor designs
 - Highly efficient CNF-SAT solvers are available as open-source software
 - For many difficult optimisation problems, reducing to CNF-SAT and applying off-the-shelf solvers can be much faster than anything you implement yourself
Lecture 6: Summary

- CNF-SAT and k-SAT
- CNF-SAT is NP-complete